
EEE499	- Real-Time	Embedded	
System	Design

Modeling	Real-Time	Tasks



Reference	Model	for	Real-time	
Systems

• A	reference	model	and	consistent	terminology	
let	us	reason	about	real-time	systems

• A	reference	model	is	characterized	by:
– A	workload	model that	describes	the	applications	
supported	by	the	system	

– A	resource	model	that	describes	the	system	
resources	available	to	the	applications

– Algorithms that	define	how	the	application	
system	uses	the	resources	at	all	times



Timing	Model

• We	need	to	characterize	jobs	in	order	to	
schedule,	manage	and	reason	about	them	
with	respect	to	time



Periodic	Tasks	Timing	Model

Ti =	(φi,	pi,	ei,	Di)

Phase	 Period Execution
Time

Relative
DeadlineTask

A	set	of	jobs	that	are	executed	at	regular	time	
intervals	can	be	modelled	as	a	periodic	task.



Periodic	Tasks	Timing	Model
• The	4-tuple	Ti =	(φi,	pi,	ei,	Di)	refers	to	a	periodic	
task	Ti with
– phase	φi,	is	the	release	time	ri,1 of	the	first	job	Ji,1 in	
the	task.	

– period	pi,	is	the	minimum	length	of	all	time	intervals	
between	release	times	of	consecutive	jobs

– execution	time	ei,	is	the	maximum	execution	time	of	
all	jobs	in	the	periodic	task

– and	relative	deadline	Di
– Default	phase	of	Ti is	φi =	0,	
– Default	relative	deadline	is	the	period	Di =	pi



Periodic	Tasks	Timing	Model

t

C

B

A 20

30

50

20

10

30

idle idle

0 40 80 1006020 120 140 160 180 200

- task	released

- task	completed



Precedence	Constraints	and	
Dependencies

• Jobs	in	a	task	may	be	constrained	to	execute	in	a	
particular	order
– Known	as	a	precedence	constraint
– ji is	a	predecessor	to	another	job	jk if	jk cannot	begin	
execution	until	ji completes	its	execution
• Denoted	by	ji <	jk
• ji is	an	immediate	predecessor	of	jk if	there	are	no	job	such	
that						ji <	jj <	jk

• ji and	jk are	independent	when	neither	ji <	jk nor	jk <	ji
• A	job	with	a	precedence	constraint	becomes	
ready for	execution	when	its	release	time	has	
passed	and	all	predecessors	have	completed



Release	Times

• The	release	time	of	a	task	is	the	time	at	which	
a	task	becomes	available	for	execution

• Why	becomes available?	
• What	if	all	tasks	are	always	available	for	
execution?



Release	Time

• We	do	not	know	exactly	when	the	job	will	be	
released
– Release	time	jitter	due	to	
• the	granularity	of	clock	tick	(RTOS)
• ISR	time	(depends	on	number	of	tasks	and	resources…	
why?)

• Even	after	it	is	ready	to	be	executed,	a	task	
may	still	suffer	interference from	higher	
priority	tasks

• And	other	interrupts…



Release	Time

• So	we	will	have	a	release	time	variation
• [ri-,ri+]
• ri- is	the	“earliest	release	time”
• ri+ is	the	“latest	release	time”
• For	periodic	tasks,	ri is	the	phase	φi of	the	task



Release	Time

• But	what	happens	if	we	specify	a	release	time	
that	is	not	effective?		

T1

T2 T3

T1 must precede T3

Ti(φi, pi, ei, Di)

T1(8,10,2,10)

T2(7,15,3,15)

T3(5,12,1,12)



Release	Time

T1

T2 T3

Ti(φi, pi, ei, Di)

T1(8,10,2,16)

T2(7,15,3,15)

T3(5,12,1,12)

0 4 6 8 10 122 14 16 18 20 22 24

...
T1 T2T3

T2 Release Spec T1 Release Spec

T3 Release Spec T2 and T3 Effective 
Release Time



Effective	Release	Time

• So	the	effective	release	time	for	task	Ti is	the	
maximum	of	its	specified	release	time	and	the	
maximum	effective	release	time	of	any	of	its	
predecessors	+	their	execution	times	
– Obviously	this	is	recursive
–We	have	not	yet	considered	mutual	exclusion	
constraints,	just	precedence	due	to	data	and	
control	requirements



Deadline

• The	deadline	of	a	task	is	the	time	at	which	a	job	
must	complete	execution	(within	the	clock	tic)

• A	deadline	can	be	specified	in	two	ways:
– Absolute	Deadline:	Release	Time	plus	a	relative	
deadline	
• Limits	our	ability	to	reason	about	schedulability

– Relative	Deadline:	Maximum	Allowable	Response-
Time
• Includes	interference	and	blocking	from	other	tasks…	More	
to	come.



Deadline

T1

T2 T3

Ti(φi, pi, ei, Di)

T1(8,16,2,16)

T2(7,15,3,15)

T3(5,12,1,12)

0 4 6 8 10 122 14 16 18 20 22 24

T1 T2T3

T2 Deadline Spec

T1 Deadline Spec
T3 Deadline Spec

T1 Effective Deadline



Effective	Deadline

• In	the	same	sense	as	for	release	times,	the	
effective	deadline	is	calculated	from	the	
precedence	constraints.
–More	precisely	from	the	successor	constraints

• Effective	deadline	of	a	task	is	the	minimum	of	
the	specified	deadline	for	the	task	and	the	
minimum	effective	deadline	of	all	its	
successors	minus	their	execution	time



Life	of	a	task

Ti Release Spec

Ti Effective 
Release Time

Ti Actual Response Time Ti Deadline Spec

Ti Effective Deadline



Processors	and	Resources

• Recall	that	a	job	executes	on	a	special	
resource	which	we	call	a	processor

• The	job	may	also	depend	on	some	resources
• A	processor,	P,	is	an	active	component	on	
which	jobs	are	scheduled:	i.e.
– Threads	scheduled	on	a	CPU
– Data	scheduled	on	a	transmission	link
– Read/write	requests	scheduled	to	a	disk
– Transactions	scheduled	on	a	database	server



Processors	and	Resources

• Processor	(continued)
– Each	processor	has	a	speed	attribute	that	
determines	the	rate	of	progress	of	a	job

– Two	processors	are	of	the	same	type if	they	are	
functionally	identical	and	can	be	used	
interchangeably.
• What	would	make	two	processors	heterogeneous?



Processors	and	Resources

• A	resource,	R, is	a	passive	entity	upon	which	
jobs	may	depend:	i.e.
–Memory,	sequence	numbers,	mutexes,	database	
locks,	mailboxes,…

– Resources	have	different	types and	sizes,	but	do	
not	have	a	speed	attribute

– Resources	are	usually	reusable,	and	are	not	
consumed	by	use



Use	of	Resources

• If	a	system	contains	n	types	of	resources	it	
means:
– There	are	n different	types	of	serially	reusable
resources

– There	are	one	or	more	units	of	each	type	of	
resources,	only	one	job	can	use	each	unit	at	once	
(Mutually	exclusive	access)

– A	job	must	obtain	a	unit	of	a	needed	resources,	
use	it	and	release	it



Execution	Time
• Perhaps	one	of	the	most	difficult	number	to	
estimate	is	that	of	execution	time.

• The	execution	time	for	job	Ji varies	in	the	interval	
[ei-,ei+]	the	interval	depends	on:
– Conditional	branches
– Iterations	in	unbounded	loops
– Caches

• Without	loss	in	generality	we	can	have	ei =	ei+
– The	execution	time	for	the	job	is	therefore	the	
maximum	execution	time ignoring	the	interval	and	
lower	bound



Execution	Time

• Needed	to	determine	if	deadlines	can	be	met.
• What	time	do	we	choose?
– The	one	from	the	last	execution?
– The	 one	from	the	longest	execution?
– The	average?

• How	do	we	determine	the	execution	time?



Execution	Time

How	do	we	determine	the	execution	time?

1. Analysis	of	the	source	code
2. Estimation	from	empirical	evidence

[2]



Release	Time

• So	we	will	have	a	release	time	variation
• [ri-,ri+]
• ri- is	the	“earliest	release	time”
• ri+ is	the	“latest	release	time”
• For	periodic	tasks,	ri is	the	phase	φiof	the	task



Release	and	Response	Time
• Release	Time	– The	instant	in	time	when	a	job	
becomes	available	for	execution
– May	not	be	exact:	Release	time	jitter	in	the	interval		
[ri-,	ri+]

– A	job	can	be	scheduled	and	executed	at	any	time	at	or	
after	its	release	time	provided	its	resource	
dependency	conditions	are	met	
• Including	precedence	constraints

• Response	Time	– the	length	of	time	from	the	
release	time	of	the	job	to	the	time	instant	when	it	
completes

• Not	the	same	as	execution	time!



Response	Time

Ji

Response	time

Time

ri- ri+

Release	time,	ri



Deadlines	and	Timing	Constraints

• Completion	Time	– the	instant	at	which	a	job	
completes	execution

• Relative	deadline	– the	maximum	allowable	
job	response	time	(Schedulability analysis)

• Absolute	deadline – the	instant	of	time	by	
which	a	job	is	required	to	be	completed
– Absolute	deadline	=	release	time	+	relative	
deadline

– Feasible	interval	for	job	Ji is	the	interval	(ri,	di]



Response	Time

Ji

Response	time

Time

ri- ri+

Release	time,	ri

Relative	deadline,	Di

Completion	time

Absolute	deadline,	di



Aperiodic	and	Sporadic	Jobs
• Many	real-time	systems	are	required	to	respond	to	unpredictable	

events.
• These	are	modelled	as	aperiodic	or	sporadic	jobs

– An	aperiodic	job	has	unpredictable	release	times
– A	sporadic	job	is	a	aperiodic	job	 that	has	a	hard	deadline.

• Aperiodic	jobs	are	always	accepted.	
• Sporadic	jobs	make	the	design	of	a	hard	real-time	system	

impossible,
– unless	some	bounds	can	be	placed	on	their	inter-arrival	times.	Note	

that	without	a	minimum	inter-arrival	time	restriction,	it	is	impossible	
to	guarantee	that	a	deadline	of	a	sporadic	task	would	always	be	met.

– Based	on	the	execution	time	and	deadline	of	each	newly	arrived	
sporadic	job,	decide	whether	to	accept	or	reject	the	job.



Exercise	1		

• Calculate	the	effective	release	time	for	the	
following	tasks.	

T1

T3 T4

Ti(φi, pi, ei, Di)

T1(8,10,2,16)

T2(10,15,3,15)

T3(5,12,1,12)

T4(7,12,1,12)

T5(12,12,1,12)

T6(5,12,1,12)T5 T6

T2



Exercise	1		

• Calculate	the	effective	release	time	for	the	
following	tasks.	

T1

T3 T4

Ti(φi, pi, ei, Di)

T1(8,10,2,16)

T2(10,15,3,15)

T3(5,12,1,12)

T4(7,12,1,12)

T5(12,12,1,12)

T6(5,12,1,12)

T5 T6

T28 10

Max(8+2,	5)
=10

Max(10+3,	8+2,	7)=13

Max(10+1,	12)=12 Max(13+1,	5)=14



Exercise	2		

• Calculate	the	effective	deadline	for	the	
following	tasks.	

T1

T3 T4

Ti(φi, pi, ei, Di)

T1(8,10,2,16)

T2(10,15,3,15)

T3(5,12,1,13)

T4(7,12,2,18)

T5(12,12,1,10)

T6(5,12,2,14)T5 T6

T2



Exercise	2		

• Calculate	the	effective	deadline	for	the	
following	tasks.	

T1

T3 T4

Ti(φi, pi, ei, Di)

T1(8,10,2,16)

T2(10,15,3,15)

T3(5,12,1,13)

T4(7,12,2,18)

T5(12,12,1,10)

T6(5,12,2,14)T5 T6

T2

10 14

A_D=Min(18+7,	5+14-2)
=17
D=	17-7=10

A_D=Min(13+5,	22-1)
=18
D=18-5=13

A_D=Min(8+16,	18-1, 17-2)
=15
D=	15-8=7

A_D=Min(8+16,	17-2)
=15
D=15-10=5



References

[1]	Liu,	J.	W.	S.	Real-Time	Systems.	Prentice	Hall,	
2000.

[2]	Harder,	D.	W.,	Zarnett,	J.,	Montaghami,	V.,	
Giannikouris,	A.	A	practical	introduction	to	real-
time	systems	for	undergraduate	engineering,	
Version	0.2017.05.01.	University	of	Waterloo,	
2017.	[Available	online]


