
Real	Time	Operating	Systems

Scheduling	&	Schedulers
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Scheduling	Decisions

• assignment
• ordering
• timing



Scheduling

• Scheduling	algorithms	- Policy
– the	rules under	which	tasks	are	assigned	to	
processors	are	defined	by	the	system	scheduling	
algorithm

• The	scheduler - Mechanism
– the	module	which	implements	these	algorithms	
and	protocols	



When	to	take	the	decisions?

• Design	time

• Run-time



Types	of	Schedulers

• Fully	static	scheduler
• Static	order	scheduler	(off-line	scheduler)
• Static	assignment	scheduler	
• fully-dynamic	scheduler on-line	schedulers
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Choice	of	algorithm

The	choice	of	scheduling	algorithm	depends	on	
the	goals
–Meeting	all	the	deadlines
–Minimize	the	response	time
–Maximize	utilization
– Combination	of	goals
– Etc.



Schedules

• Schedules
– a	schedule is	the	assignment	by	the	scheduler	of	
all	tasks	in	the	system	to	the	available	processors

– we	assume	that	the	scheduler	is	correct	in	that	->
• It	only	produces	valid	schedules

1. at	any	time	one	processor	is	assigned	at	most	one	job
2. at	any	time	each	job	is	assigned	at	most	one	processor*
3. no	job	is	scheduled	before	its	release	time
4. the	total	amount	of	processor	time	allocated	is	equal	to	each	job’s	

maximum	execution	time	(or	actual)**
5. all	precedence	and	resource	constraints	are	met

* implies no parallel processing at job level  ** depends on algorithm



Schedules

• Feasible	schedules
– a	feasible	schedule is	one	in	which	all	jobs	meet	
their	timing	constraints	(usually	deadlines)

– to	say	that	a	set	of	jobs	is	schedulableby	an		
algorithm	implies	that	scheduling	under	this	
algorithm	always	produces	a	feasible	schedule

• Optimal	algorithms
– an	algorithm	which	always	produces	a	feasible	
schedule,	if	one	exists,	is	said	to	be	optimal

What does this say about a set of jobs which cannot be scheduled by an optimal algorithm?



Approaches	to	Scheduling

There	are	generally	three	broad	classes,	or	
approaches	to	processor	scheduling:

– Clock-driven	scheduling
–Weighted	Round-robin	scheduling
– Priority	scheduling	



Clock-Driven	Scheduling

• At	pre-specified	time	instants,	a	task	or	
sequence	of	tasks	are	scheduled	onto	the	
processor(s)
– job/task	scheduling	is	designed	off-line
– all	system	job	parameters	are	known	a	priori	and	
are	fixed

– scheduling	overhead	is	minimal
–may	be	implemented	using	a	hardware	timer	
mechanism



Clock-Driven	Scheduling

• Observe	the	schedule	below	for	this	system:
{T1=	(4,1)	,	T2=	(5,1.5),	T3 =	(20,1)	,	T4 =	(20,2)}
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...
hyperperiod, H = 20

slack time (space for asynchronous jobs)

T1 T1 T1 T1 T1T2 T2 T2 T2T3 T4

How do we choose this design? How do we implement this design? 

T1



Clock-Driven	Scheduling

• Rather	than	making	scheduling	decisions	at	
arbitrary	times,	limit	decision	making	to	
specific	points	in	the	hyperperiod,	at	frame	
boundaries

0 4 6 8 10 122 14 16 18 20 22 24

...
hyperperiod, H = 20

frame size, f = 4

T1 T1 T1 T1 T1T2 T2 T2 T2T3 T4

scheduling decision points

major cycle
No preemption within framesminor cycle on T1



Round-Robin	Scheduling

• In	straight	round	robin	scheduling,	
– ready	tasks	are	inserted	in	a	FIFO	queue	and	when	
they	reach	the	front	of	the	queue	they	are	given	
an	equal	slice	of	processor	time

– tasks	are	preempted	at	the	end	of	their	slice	
regardless	of	completion	status

– therefore	in	an	n	job	system,	each	job	gets	1/n	th
of	the	processor

– typically	processor	time	slices	are	quite	short	with	
respect	to	execution	times



Weighted	Round-Robin	Scheduling

• In	weighted	round	robin	scheduling,
– each	task/job	gets	wt slices	of	the	processor	time	
depending	upon	the	weight	of	the	task

– therefore	in	an	n	job	system,	job	Ji gets		wti/(Σwt)
of	the	processing	time

• Example: Job wt e %	CPU
J1 2 3 ___
J2 5 7 ___
J3 2 4 ___
J4 1 3 ___

What would 1 round of time slice scheduling look like?



Priority-Driven	Scheduling

• In	a	priority-driven	system,	ready	tasks	are	
assigned	to	processors	according	to	their	
relative	priorities
– also	called	greedy	scheduling	or	list	scheduling
– priorities	may	be	static	or	dynamic	
– tasks	may	be	preemptable or	nonpreemptable



Priority-Driven	Scheduling

• A	dynamic	priority	scheduling algorithm	
allows	for	task/job	priorities	to	change	at	run-
time

• With	static	priority	scheduling the	tasks/jobs	
have	a	fixed	(generally)	a	priori	priority	
assignment
– do	not	confuse	this	with	dynamic	&	static	systems



Validating	the	Timing	Constraints

• Step	1	– specification	correctness
– Check	for	consistency/correctness	of	constraints

• Step	2	– task	feasibility
– Validate	that	each	task	can	meet	its	constraints	if	
it	were	to	execute	standalone	on	the	processor

• Step	3	– system	validation*
– Validate	that	all	tasks	together	under	the	given	
scheduling	&	resource	management	strategy	meet	
their	respective	constraints

* The difficult part!



The	Periodic	Task	Model

• The	periodic	task	model	is	a	classical	workload
model	of	real-time	systems;	one	which	we	will	
study	further	in	this	course
– the	underlying	assumption	is	that	each	regular	or	
semi-regular	function	of	the	system	be	modeled	as	a	
periodic	task

– each	periodic	task	(Ti)	is	defined	by	its	period	(pi)	and	
its	worst-case	execution	time	(ei)

– a	task’s	period is	defined	as	the	minimum	length	of	all	
time	intervals	between	release	times	of	consecutive	
jobs



The	Periodic	Task	Model

• The	accuracy	of	the	model is	dictated	by	how	
closely	it	resembles	the	system	under	study
– it	is	quite	accurate	when	the	release	time	jitter	is	
small	(best	when	all	tasks	are	truly	periodic)	and	
when	the	execution	times	of	tasks	are	well	known	
and	have	small	deviations	

– conversely	the	accuracy	of	the	model	degrades	if	
the	release	time	jitters	are	high	and/or	the	
execution	times	have	high	variance
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