
Real	Time	Operating	Systems

Scheduling	&	Schedulers

Tasks	Model

t

C

B

A 20

30

50

20

10

30

idle idle

0 40 80 1006020 120 140 160 180 200

- task	released

- task	completed

Scheduling	Decisions

• assignment
• ordering
• timing

Scheduling

• Scheduling	algorithms	- Policy
– the	rules under	which	tasks	are	assigned	to	
processors	are	defined	by	the	system	scheduling	
algorithm

• The	scheduler - Mechanism
– the	module	which	implements	these	algorithms	
and	protocols	

When	to	take	the	decisions?

• Design	time

• Run-time

Types	of	Schedulers

• Fully	static	scheduler
• Static	order	scheduler	(off-line	scheduler)
• Static	assignment	scheduler	
• fully-dynamic	scheduler on-line	schedulers

Preemption

Non-preemtive scheduler

Ji

Response	time

Time

Release	time,	ri

Relative	deadline,	Di

Completion	time

Absolute	deadline,	di

Preemption

Preemptive	scheduler

Ji

Response	time

Time

Release	time,	ri

Relative	deadline,	Di

Completion	time

Absolute	deadline,	di

Ji

preemption

+
Execution	time

Choice	of	algorithm

The	choice	of	scheduling	algorithm	depends	on	
the	goals
–Meeting	all	the	deadlines
–Minimize	the	response	time
–Maximize	utilization
– Combination	of	goals
– Etc.

Schedules

• Schedules
– a	schedule is	the	assignment	by	the	scheduler	of	
all	tasks	in	the	system	to	the	available	processors

– we	assume	that	the	scheduler	is	correct	in	that	->
• It	only	produces	valid	schedules

1. at	any	time	one	processor	is	assigned	at	most	one	job
2. at	any	time	each	job	is	assigned	at	most	one	processor*
3. no	job	is	scheduled	before	its	release	time
4. the	total	amount	of	processor	time	allocated	is	equal	to	each	job’s	

maximum	execution	time	(or	actual)**
5. all	precedence	and	resource	constraints	are	met

* implies no parallel processing at job level ** depends on algorithm

Schedules

• Feasible	schedules
– a	feasible	schedule is	one	in	which	all	jobs	meet	
their	timing	constraints	(usually	deadlines)

– to	say	that	a	set	of	jobs	is	schedulableby	an		
algorithm	implies	that	scheduling	under	this	
algorithm	always	produces	a	feasible	schedule

• Optimal	algorithms
– an	algorithm	which	always	produces	a	feasible	
schedule,	if	one	exists,	is	said	to	be	optimal

What does this say about a set of jobs which cannot be scheduled by an optimal algorithm?

Approaches	to	Scheduling

There	are	generally	three	broad	classes,	or	
approaches	to	processor	scheduling:

– Clock-driven	scheduling
–Weighted	Round-robin	scheduling
– Priority	scheduling	

Clock-Driven	Scheduling

• At	pre-specified	time	instants,	a	task	or	
sequence	of	tasks	are	scheduled	onto	the	
processor(s)
– job/task	scheduling	is	designed	off-line
– all	system	job	parameters	are	known	a	priori	and	
are	fixed

– scheduling	overhead	is	minimal
–may	be	implemented	using	a	hardware	timer	
mechanism

Clock-Driven	Scheduling

• Observe	the	schedule	below	for	this	system:
{T1=	(4,1)	,	T2=	(5,1.5),	T3 =	(20,1)	,	T4 =	(20,2)}

0 4 6 8 10 122 14 16 18 20 22 24

...
hyperperiod, H = 20

slack time (space for asynchronous jobs)

T1 T1 T1 T1 T1T2 T2 T2 T2T3 T4

How do we choose this design? How do we implement this design?

T1

Clock-Driven	Scheduling

• Rather	than	making	scheduling	decisions	at	
arbitrary	times,	limit	decision	making	to	
specific	points	in	the	hyperperiod,	at	frame	
boundaries

0 4 6 8 10 122 14 16 18 20 22 24

...
hyperperiod, H = 20

frame size, f = 4

T1 T1 T1 T1 T1T2 T2 T2 T2T3 T4

scheduling decision points

major cycle
No preemption within framesminor cycle on T1

Round-Robin	Scheduling

• In	straight	round	robin	scheduling,	
– ready	tasks	are	inserted	in	a	FIFO	queue	and	when	
they	reach	the	front	of	the	queue	they	are	given	
an	equal	slice	of	processor	time

– tasks	are	preempted	at	the	end	of	their	slice	
regardless	of	completion	status

– therefore	in	an	n	job	system,	each	job	gets	1/n	th
of	the	processor

– typically	processor	time	slices	are	quite	short	with	
respect	to	execution	times

Weighted	Round-Robin	Scheduling

• In	weighted	round	robin	scheduling,
– each	task/job	gets	wt slices	of	the	processor	time	
depending	upon	the	weight	of	the	task

– therefore	in	an	n	job	system,	job	Ji gets		wti/(Σwt)
of	the	processing	time

• Example: Job wt e %	CPU
J1 2 3 ___
J2 5 7 ___
J3 2 4 ___
J4 1 3 ___

What would 1 round of time slice scheduling look like?

Priority-Driven	Scheduling

• In	a	priority-driven	system,	ready	tasks	are	
assigned	to	processors	according	to	their	
relative	priorities
– also	called	greedy	scheduling	or	list	scheduling
– priorities	may	be	static	or	dynamic	
– tasks	may	be	preemptable or	nonpreemptable

Priority-Driven	Scheduling

• A	dynamic	priority	scheduling algorithm	
allows	for	task/job	priorities	to	change	at	run-
time

• With	static	priority	scheduling the	tasks/jobs	
have	a	fixed	(generally)	a	priori	priority	
assignment
– do	not	confuse	this	with	dynamic	&	static	systems

Validating	the	Timing	Constraints

• Step	1	– specification	correctness
– Check	for	consistency/correctness	of	constraints

• Step	2	– task	feasibility
– Validate	that	each	task	can	meet	its	constraints	if	
it	were	to	execute	standalone	on	the	processor

• Step	3	– system	validation*
– Validate	that	all	tasks	together	under	the	given	
scheduling	&	resource	management	strategy	meet	
their	respective	constraints

* The difficult part!

The	Periodic	Task	Model

• The	periodic	task	model	is	a	classical	workload
model	of	real-time	systems;	one	which	we	will	
study	further	in	this	course
– the	underlying	assumption	is	that	each	regular	or	
semi-regular	function	of	the	system	be	modeled	as	a	
periodic	task

– each	periodic	task	(Ti)	is	defined	by	its	period	(pi)	and	
its	worst-case	execution	time	(ei)

– a	task’s	period is	defined	as	the	minimum	length	of	all	
time	intervals	between	release	times	of	consecutive	
jobs

The	Periodic	Task	Model

• The	accuracy	of	the	model is	dictated	by	how	
closely	it	resembles	the	system	under	study
– it	is	quite	accurate	when	the	release	time	jitter	is	
small	(best	when	all	tasks	are	truly	periodic)	and	
when	the	execution	times	of	tasks	are	well	known	
and	have	small	deviations	

– conversely	the	accuracy	of	the	model	degrades	if	
the	release	time	jitters	are	high	and/or	the	
execution	times	have	high	variance

References

[1]	Liu,	J.W.S.,	“Real-Time	Systems”,	Prentice-Hall,	
2000.

[2] Lee,	E.	A.,	Seshia,	S.	A.	“Introduction	to	
Embedded	Systems	-A	Cyber-Physical	Systems	
Approach”,	Second	Edition,	MIT	Press,	2017.	

