ROYAL MILTARY COLLEGE OF CANADA
ELECTRICAL & COMPUTER

ENGINEERING

Real Time Operating Systems

Scheduling & Schedulers

J / BENIE ELECTRIQUE
e RMC CMR

/

Tasks Model

T - task released

O -task completed

Scheduling Decisions

e assignment
* ordering
* timing

Scheduling

* Scheduling algorithms - Policy

— the rules under which tasks are assigned to
processors are defined by the system scheduling
algorithm

e The scheduler - Mechanism

— the module which implements these algorithms
and protocols

When to take the decisions?

* Designtime

e Run-time

Types of Schedulers

Fully static scheduler

Static order scheduler (off-line scheduler)

Static assignment scheduler |

fully-dynamic scheduler

—

—_

on-lineschedulers

Preemption

Non-preemtive scheduler

Relative deadline, D;

Response time

_-1—————K——

Release time, r;

Completion time

> Tlime

— IRPRpp——. S

Absolute deadline, d;

Preemptive scheduler

Preemption

Relative deadline, D;

Response time

Release time, r;

\ J
1

preemption

+
Executiontime

Completion time

> Tlime

— IRPRpp——. S

Absolute deadline, d;

Choice of algorithm

The choice of scheduling algorithm depends on
the goals

— Meeting all the deadlines

— Minimize the response time
— Maximize utilization

— Combination of goals

— Etc.

Schedules

 Schedules

— a schedule is the assignment by the scheduler of
all tasks in the system to the available processors

— we assume that the scheduleris correctin that ->
* |t only producesvalid schedules

1. atanytime oneprocessorisassignedat mostonejob

2. atanytimeeachjobis assigned at most one processor*
3. nojobisscheduled beforeitsreleasetime
4

the total amount of processortime allocatedis equal to each job’s
maximum execution time (or actual)™**

5. allprecedenceandresource constraints are met

Schedules

 Feasible schedules

— a feasible schedule is one in which all jobs meet
their timing constraints (usually deadlines)

— to say that a set of jobs is schedulable by an
algorithm implies that scheduling under this
algorithm always produces a feasible schedule

* Optimal algorithms

— an algorithm which always produces afeasible
schedule, if one exists, is said to be optimal

Approaches to Scheduling

There are generally three broad classes, or
approaches to processor scheduling:

— Clock-drivenscheduling
— Weighted Round-robin scheduling
— Priority scheduling

Clock-Driven Scheduling

e At pre-specifiedtime instants, a task or
sequence of tasks are scheduled onto the
processor(s)

— job/task scheduling is designed off-line

— all system job parameters are known a prioriand
are fixed

— scheduling overhead is minimal

— may be implemented using a hardware timer
mechanism

Clock-Driven Scheduling

* Observe the schedule below for this system:
{T1= (411)) TZ= (5115)) T3 = (2011)) T4 = (2012)}

slack time (space for asynchronous jobs)

/ \\\hYPemerlod, H =20

T,| T, [T] [Ty| T, T,| T, T,| T, T|T,| [T
§ 10 12 14 1

0 2 4 6 6 18 20 22 24

Clock-Driven Scheduling

* Rather than making scheduling decisions at
arbitrary times, limit decision making to
specific pointsin the hyperperiod, at frame

boundaries

scheduling decision points hyperperiod, H =20

2 N

4 T, T, T T,

T, Tz [T5] [Ty| T

0O 2 4 6 8 10 12 14 16 18 20 22 24
N /
~
major cycle

minor cycle on T, No preemption within frames

Round-Robin Scheduling

* |n straight round robin scheduling,

— ready tasks are inserted in a FIFO queue and when
they reach the front of the queue they are given
an equal slice of processor time

— tasks are preempted at the end of their slice
regardless of completion status

— therefore inan n job system, each job gets 1/n t
of the processor

— typically processor time slices are quite short with
respect to execution times

Weighted Round-Robin Scheduling

In weighted round robin scheduling,

— each task/job gets wt slices of the processor time
depending upon the weight of the task

— therefore inan n job system, job J. gets wt./(Zwt)
of the processing time

* Example: Job wt e %CPU
), 2
J, 5
I 2
), 1

w b J W

What would 1 round of time slice scheduling look like?

Priority-Driven Scheduling

* |n a priority-driven system, ready tasks are
assigned to processors accordingto their
relative priorities
— also called greedy scheduling or list scheduling
— priorities may be static or dynamic
— tasks may be preemptable or nonpreemptable

Priority-Driven Scheduling

* A dynamic priority scheduling algorithm
allows for task/job priorities to change at run-
time

* With static priority scheduling the tasks/jobs

have a fixed (generally) a priori priority
assignment

— do not confuse this with dynamic & static systems

Validating the Timing Constraints

e Step 1 - specification correctness
— Check for consistency/correctness of constraints

e Step 2 —task feasibility

— Validate that each task can meet its constraints if
it were to execute standalone on the processor

e Step 3 —systemvalidation™

— Validate that all tasks together under the given
scheduling & resource management strategy meet

their respective constraints
* The difficult part!

The Periodic Task Model

 The periodic task modelis a classical workload
model of real-time systems; one which we will
study further in this course
— the underlying assumptionis that each regular or

semi-regular function of the system be modeled as a
periodic task

— each periodictask (T;) is defined by its period (p;) and
its worst-case execution time (e;)

— a task’s period is defined as the minimum length of all
time intervals between release times of consecutive
jobs

The Periodic Task Model

 The accuracy of the model is dictated by how
closely it resemblesthe system understudy

— it is quite accurate when the release time jitter is
small (best when all tasks are truly periodic) and
when the execution times of tasks are well known

and have small deviations

— conversely the accuracy of the model degrades if
the release time jitters are high and/or the
execution times have high variance

References

[1] Liu, J.W.S., “Real-Time Systems”, Prentice-Hall,
2000.

[2] Lee, E. A., Seshia, S. A. “Introduction to

Embedded Systems - A Cyber-Physical Systems
Approach”, Second Edition, MIT Press, 2017.

