
EEE499	- Real-Time	Embedded	
System	Design

Real-Time	Schedulability Part	I



Scheduling

• Scheduling	algorithms	- Policy
– the	rules under	which	tasks	are	assigned	to	
processors	are	defined	by	the	system	scheduling	
algorithm

• The	scheduler - Mechanism
– the	module	which	implements	these	algorithms	
and	protocols	



Preemptive	Fixed	Priority	Scheduling

• Priority	can	be	determined	by:
– Period: shortest	period	has	highest	priority
– Deadline: shortest	deadline	has	highest	priority



Preemptive	Fixed	Priority	Scheduling

• Priority	can	be	determined	by:
– Period: shortest	period	has	highest	priority
– Deadline: shortest	deadline	has	highest	priority

• Rate	Monotonic priority	assignation	is	based	
on	the	period

• Deadline	Monotonic priority	assignation	is	
based	on	the	deadline

• When	period	=	deadline:	RM	=	DM



Preemptive	Fixed	Priority	Scheduling

t

C

B

A

0 40 80 1006020 120 140 160 180 200

Ready TA (100,	20)TB (160,	30) TC (200,	60)



Preemptive	Fixed	Priority	Scheduling

t

C

B

A 20

0 40 80 1006020 120 140 160 180 200

Ready TB (160,	30) TC (200,	60)



Preemptive	Fixed	Priority	Scheduling

t

C

B

A 20

0 40 80 1006020 120 140 160 180 200

Ready TC (200,	60)

30



Preemptive	Fixed	Priority	Scheduling

t

C

B

A 20

0 40 80 1006020 120 140 160 180 200

30

idle

Ready TC (200,	60)



Preemptive	Fixed	Priority	Scheduling

t

C

B

A 20

0 40 80 1006020 120 140 160 180 200

30

idle

40

Ready



Preemptive	Fixed	Priority	Scheduling

t

C

B

A 20

0 40 80 1006020 120 140 160 180 200

30

idle

40

Ready TA (100,	20)



Preemptive	Fixed	Priority	Scheduling

t

C

B

A 20

0 40 80 1006020 120 140 160 180 200

30

idle

40

Ready

20

TC (200,	60)



Preemptive	Fixed	Priority	Scheduling

t

C

B

A 20

0 40 80 1006020 120 140 160 180 200

30

idle

40

Ready

20

20



Preemptive	Fixed	Priority	Scheduling

t

C

B

A 20

0 40 80 1006020 120 140 160 180 200

30

idle

40

Ready

20

20

idle

TB (160,	30)



RM	is	optimal

Optimal	algorithms: an	algorithm	which	always	
produces	a	feasible	schedule,	if	one	exists,	is	
said	to	be	optimal.

Rate	monotonic	priority	assignment	is	indeed	
optimal.



RM	is	optimal
• Assumptions:

1. Tasks	are	periodic	and	the	period	is	constant
2. Completion-time	<	period
3. Tasks	are	independent
4. Runtime	is	known	and	deterministic
5. all	system	overheads	are	negligible	or	deemed	to	be	included	

in	task	computation	times
6. Critical	instant - defined	as	the	maximum	load	condition	when	

all	tasks	release	together

• Constraints
1. Deadline	=	period
2. fixed	set	of	tasks
3. Preemptive



RM	is	optimal

T2

T1

t
0 2 4 531 6

D1 D1 D2

T1=	(2,1)
T2=	(5,2)

1

2



RM	is	optimal

T2

T1

t
0 2 4 531 6

D1 D1 D2

T1=	(2,1)
T2=	(5,2) 1

2



RM	is	optimal

But	it	does	not	tell	us	anything	as	to	whether	a	
set	of	tasks	is	schedulable.



RM	Least	Upper	Bound

U:	Utilization	of	the	CPU	that	is	achievable
ei:	Execution	time	of	task	i
m:	Total	number	of	tasks	sharing	common	CPU	

resources
pi:	Release	period	of	task	i

𝑈 =#(𝑒&	/𝑝&

*

&+,

) ≤ 𝑚(2
1
*	 − 1)



RM	Least	Upper	Bound

S2

S1

t
0 2 4 531 6

T1

T2

S1=	(2,1)
S2=	(5,1)

7 8 9 10

U	=	1/2	+	1/5	=	0.7
U =	0.7	<	2(21/2 - 1)	=	0.83



RM	Least	Upper	Bound

S2

S1

t
0 2 4 531 6

T1

T2

S1=	(2,1)
S2=	(5,2)

7 8 9 10

U	=	1/2	+	2/5	=	0.9
U =	0.9	>	2(21/2 - 1)	=	0.83



RM	Least	Upper	Bound

S2

S1

t
0 2 4 531 6

T1

T2

S1=	(2,1)
S2=	(5,2)

7 8 9 10

U	=	1/2	+	2/5	=	0.9
U =	0.9	>	2(21/2 - 1)	=	0.83 ?



RM	Least	Upper	Bound
a	set	of	m independent	periodic	tasks	scheduled	by	the	rate	
monotonic	least	upper	bound	algorithm	will	always meet	its	
deadlines,	if

URM converges	to	69.3%	for	large	m

• a	sufficientbut	not	necessary	test
– i.e.	we	cannot say	that	a	system	with	higher	utilization	is	not

schedulable	with	this	scheduling	algorithm	

URM

𝑈 =#(𝑒&	/𝑝&

*

&+,

) ≤ 𝑚(2
1
*	 − 1)



RM	LUB	Example	1
Task ei pi Ui

A 20 100
B 30 150
C 60 200



RM	LUB	Example	1

U1 +	U2 +	U3 =	0.7,	and	is	smaller	than URM(3)	
where	URM(3)	=	3*(21/3 - 1)	=	0.779

Therefore	these	tasks	will	always	meet	their	
deadlines	under	the	scheduling	scheme:

P(A)	=	1,		P(B)=2,		P(C)=3

Task ei pi Ui

A 20 100 0.2
B 30 150 0.2
C 60 200 0.3



RM	LUB	Example	1

t

C

B

A 20

30

50

20

10

30

idle idle

0 40 80 1006020 120 140 160 180 200

- task	released

- task	complete

Task ei pi Ui

A 20 100

B 30 150

C 60 200



RM	LUB	Example	2
Task ei pi Ui

A 12 50
B 10 40
C 10 30



U1 +	U2 +	U3 =	0.82,	and	is	not ≤ URM(3)
where	URM(3)	=	3*(21/3 - 1)	=	0.779

Therefore	these	tasks	fail	the	utilization	test,	and	
by	examination	of	their	Gantt	chart,	it	can	be	seen	
that	all	deadlines	will	not	be	met	

RM	LUB	Example	2
Task ei pi Ui

A 12 50 0.24
B 10 40 0.25
C 10 30 0.33



RM	LUB	Example	2

t

C

B

A

0 20 40 503010 60 70

10

- task	released

- task	complete

10

10

10

x x -missed	deadline

...
10

Task ei pi Ui

A 12 50

B 10 40

C 10 30



RM	LUB	Example	3
Task ei pi Ui

A 40 80
B 10 40
C 5 20



RM	LUB	Example	3

U1 +	U2 +	U3 =	1.00,	and	is	not ≤ URM(3)
again	where	URM(3)	=	3*(21/3 - 1)	=	0.779

These	tasks	clearly	fail	the	utilization	test,	but	
after	examination	of	their	Gantt	chart,	it	can	be	
seen	that	all	deadlines	will	be	met	????

Task ei pi Ui

A 40 80 0.5
B 10 40 0.25
C 5 20 0.25



RM	LUB	Example	3

t

C

B

A

0 20 40 503010 60 70

5

- task	released

- task	complete

5

15

80

5 5 5

5

10 10

15

Task ei pi Ui

A 40 80

B 10 40

C 5 20



Additional	Points	on	RM	LUB

• RM	LUB	has	the	advantage	of	being	stable	in	
conditions	of	transient	overload	
– a	subset	of	the	tasks	(those	with	the	highest	priorities)	
will	still	meet	their	deadlines	even	in	a	temporary	
overload	condition.

• Completion	Time	Theorem	
– for	a	set	of	independent	periodic	tasks,	if	each	task	
meets	its	first	deadline	when	all	tasks	are	started	at	
the	same	time	(critical	instant),	then	the	deadlines	will	
be	met	every	time.



Weaknesses	of	RM	LUB
• utilization	test	is	not	exact

– sufficient,	but	not	necessary
– therefore	other	tests	must	be	used	(besides	manually	checking	the	

feasibility)

• the	simple	task	model	is	too	restrictive
– only	allows	for	periodic	tasks
– all	tasks	must	be	independent	

• implies	no	shared	resources	(no	mutexes)



References

[1]	Siewert,	S.	Pratt,	J.	Real-Time	Embedded	
Components	and	Systems	with	Linux	and	
RTOS.	Mercury	Learning	and	Information,	
2016.

[2] Burns,	A.	and	Wellings,	A.,	“Real-Time	
Systems	and	Programming	Languages”,		
Chapter	13,	Addison	Wesley,	1997

[3]	TimeSysCorp,	“The	Concise	Handbook	of	
Real-Time	Systems”,	Version	1.0,	1999


