EEE499 - Real-Time Embedded
System Design

Real-Time Schedulability Part |

4 ;
ROYAL MILITARY COLLESE OF CANADA GEN|E ELECTRI UE e
EERING d T RMC g/ CMR

Scheduling

* Scheduling algorithms - Policy

— the rules under which tasks are assigned to
processors are defined by the system scheduling
algorithm

e The scheduler - Mechanism

— the module which implements these algorithms
and protocols

Preemptive Fixed Priority Scheduling

* Priority can be determined by:
— Period: shortest period has highest priority
— Deadline: shortest deadline has highest priority

Preemptive Fixed Priority Scheduling

Priority can be determined by:
— Period: shortest period has highest priority
— Deadline: shortest deadline has highest priority

Rate Monotonic priority assignationis based
on the period

Deadline Monotonic priority assighationis
based on the deadline

When period = deadline: RM = DM

Preemptive Fixed Priority Scheduling

Ready —{ T; (160, 30) | T, (100, 20) —{ T, (200, 60)

Preemptive Fixed Priority Scheduling

Ready —{ T; (160, 30) —| T (200, 60)

Preemptive Fixed Priority Scheduling

Ready — T, (200, 60)

Preemptive Fixed Priority Scheduling

Ready — T, (200, 60)

idle

Preemptive Fixed Priority Scheduling

Ready —

idle

Preemptive Fixed Priority Scheduling

Ready —{ T, (100, 20)

idle

Preemptive Fixed Priority Scheduling

Ready — T (200, 60)

idle

Preemptive Fixed Priority Scheduling

Ready —

idle

Preemptive Fixed Priority Scheduling

Ready —{ T; (160, 30)

idle idle

0 20 40 60 80 100 120 140 160 180 200

RM is optimal

Optimal algorithms: an algorithm which always
produces a feasible schedule, if one exists, is
said to be optimal.

Rate monotonic priorityassignmentis indeed
optimal.

RM is optimal

* Assumptions:

Tasks are periodicand the period is constant
Completion-time < period

Tasks areindependent

Runtimeis known and deterministic

all system overheadsare negligible or deemed to be included
in task computation times

Criticalinstant - defined as the maximumload conditionwhen
all tasks release together

o UhwWwheE

* Constraints
1. Deadline=period
2. fixed set of tasks
3. Preemptive

RM is optimal

T.= (2,1)(D)
T,=(52))

RM is optimal

T.=(2,1) @)
T,=(52) ()

RM is optimal

But it does not tell us anything as to whethera
set of tasks is schedulable.

RM Least Upper Bound

uL 1
U= (e /p) S m(2m — 1)
=0

U: Utilization of the CPU that is achievable
e;: Executiontime of taskii

m: Total number of tasks sharing common CPU
resources

p;: Release period of task i

RM Least Upper Bound

S,=(2,1) U=1/2+1/5=0.7
S,=(5,1) U=0.7<2(22-1)=0.83

T,

T1 « > > : a >
S1 N S
A 5 : 5 5 : : ;

RM Least Upper Bound

S,=(2,1) U=1/2+2/5=0.9
S,=(5,2) U=0.9>2(212-1)=0.83

Tz <

o
»

Sy - N

> 9 — 9

‘&
-

RM Least Upper Bound

S,=(2,1) U=1/2+2/5=0.9 ?
S,=(5,2) U=0.9>2(2¥2-1)=0.83 =

Tz <

o
»

Sy - N

> 9 — 9

‘&
-

RM Least Upper Bound

a set of mindependent periodictasks scheduled by the rate
monotonicleast upper boundalgorithm will always meet its
deadlines, if

U 1
U= (e /p) <m(2m — 1)
i=0 b J
i

URM

Ugy convergesto 69.3% for large m

* asufficientbutnot necessary test

— i.e. we cannot say that a system with higher utilization is not
schedulable with this scheduling algorithm

RM LUB Example 1
| Task | e | | U

B 30 150
C 60 200

RM LUB Example 1

_Tesk | e | | U
A 20 100 0.2
B 30 150 0.2
C 60 200 0.3

U, + U, +U;=0.7, and is smaller than Ug,,(3)
where Ug\,(3) =3*(2%3-1) =0.779

Therefore these tasks will always meet their
deadlines under the schedulingscheme:

P(A) =1, P(B)=2, P(C)=3

RM LUB Example 1

| Task | e | P | U
A 20 100
B 30 150 T - task released
C 60 200

O -task complete

RM LUB Example 2
| Task | e | b | U

B 10 40
C 10 30

RM LUB Example 2

Tk | e | b | U
A 12 50 0.24
B 10 40 0.25
C 10 30 0.33

U, +U, +U;=0.82, and is not = Ug(3)
where Ug\,(3) =3*(2¥3-1) =0.779

Therefore these tasks fail the utilization test, and
by examination of their Gantt chart, it can be seen
that all deadlines will not be met

RM LUB Example 2

| Task | e | p | U
A 12 50
B 10 40 T - task released
C 10 30
O -task complete

A X) . .
A - h missed deadline

0 10 20 30 40 50 60 70

RM LUB Example 3
| Task | e | | U

B 10 40
C 5 20

RM LUB Example 3

_Tesk | e | | U
A 40 80 0.5
B 10 40 0.25
C 5 20 0.25

U, + U, +U;=1.00, and is not = Ug(3)
again where Ug,,(3) =3*(2¥3-1) =0.779

These tasks clearly fail the utilization test, but
after examination of their Gantt chart, it can be
seen that all deadlines will be met ?7?7??

RM LUB Example 3

| Task | e | p | U
A 40 80
B 10 40 T - task released
C 5 20
O -task complete

Additional Points on RM LUB

* RM LUB has the advantage of being stable in
conditions of transient overload

— a subset of the tasks (those with the highest priorities)
will still meet their deadlines evenin a temporary
overload condition.

e CompletionTime Theorem

— for a set of independent periodictasks, if each task
meets its first deadline when all tasks are started at
the same time (critical instant), then the deadlines will
be met every time.

Weaknesses of RM LUB

e utilizationtestis not exact

— sufficient, but not necessary
— therefore othertests must be used (besides manually checking the
feasibility)
* thesimpletask modelistoorestrictive
— onlyallows for periodictasks

— alltasks must beindependent
* implies no shared resources (ho mutexes)

References

[1] Siewert, S. Pratt, J. Real-Time Embedded
Components and Systems with Linux and

RTOS. Mercury Learning and Information,
2016.

[2] Burns, A. and Wellings, A., “Real-Time
Systems and Programming Languages’,
Chapter 13, Addison Wesley, 1997

[3] TimeSys Corp, “The Concise Handbook of
Real-Time Systems”, Version 1.0, 1999

