
EEE499	- Real-Time	Embedded	
System	Design

Schedulability Part	2



RM	Least	Upper	Bound	(RM	LUB)

U:	Utilization	of	the	CPU	that	is	achievable
ei:	Execution	time	of	task	i
m:	Total	number	of	tasks	sharing	common	CPU	

resources
pi:	Release	period	of	task	i
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Response	Time	Analysis

• a	disadvantage	of	utilization	based	
schedulability testing	for	RM	LUB	is	that	it	is	
sufficient	but	not	necessary

• to	supplement	this	test,	we	introduce	the	
notion	of	Response	Time	Analysis	



Response	Time	Analysis

Response	time	analysis	allows	to:	
– predicts	the	worst	case	response	time	for	each	task	
– compare	each	task’s	response	time	to	its	deadline

If	all	worst	case	response	times	are	less	than	their	
respective	deadlines,	the	system	is	schedulable
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Response	Time

Response	time	of	a	task	is	defined	to	be	the	sum	
of	its	own	worst	case	execution	time	and	its	
maximum	interference

Ri =	ei +	Ii (1)
where	Ii is	the	maximum	interference* that	task	i can	
experience	in	any	time	interval	[t,	t	+	Ri)		

*The	condition	for	maximum	interference	occurs	when	all	
higher	priority	tasks	are	released	at	the	same	time	as	task	i,	
the	critical	instant.



Counting	Releases
• consider	task	i and	a	higher	priority	task	j
• now,	the	number	of	releases of	task	j	in	time	
interval	0	to	Ri can	be	derived	as	follows:

#	of	releases	j =	⎡Ri/pj⎤ (2)
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Determining	Interference

• from	this,	the	maximum	interference	of	task	j	
on	task	i in	interval	0	to	Ri is	given	by:

interferencemax=	⎡ Ri/pj ⎤ ej (3)

• but	there	may	be	other	higher	priority	tasks,	
therefore:	

(4)
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Calculating	Response	Time

• substituting	equation	(4)	into	(1)	gives	the		
general	expression	for	response	time:

(5)

• note	the	following	issue	(problem):
– Ri is	on	both	sides	of	this	equation	
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Understanding	Response	Time	
(Example	1	from	last	class)

RC =		eC +	⎡ RC/pA ⎤ eA+ ⎡ RC/pB ⎤ eB
=		60		+		2(20)	+		1(30)	

=		130
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System = {(20, 100), (30, 150), (60, 200)}



Calculating	Response	Time
• essentially,	form	a	recursive	relationship	with	Equation	
(5)	and	solve	iteratively:	

(6)

where	initial	(seed)	value	

• the	algorithm	is	then	to	solve	for	successive	values	of	
wi

n+1 until	wi
n+1 =		wi

n ,	then	solution	found	->	Ri=	wi
n	

if	Ri >		Di ,	then	task	i can	not	meet	its	deadline
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Calculating	Response	Time
Example	1

Is	it schedulable?

Tâche ei pi Pi Ui

A 40 80

B 10 40

C 5 20



Calculating	Response	Time

Is	it schedulable?

Tâche ei pi Pi Ui

A 40 80 3

B 10 40 2

C 5 20 1



Calculating	Response	Time

Is	it schedulable?
U	=	1	>	0.779

Tâche ei pi Pi Ui

A 40 80 3 0.5

B 10 40 2 0.25

C 5 20 1 0.25



Simple	Task	Model
• Assumptions:

1. Tasks	are	periodic	and	the	period	is	constant
2. Completion-time	<	period
3. Tasks	are	independent
4. Runtime	is	known	and	deterministic
5. all	system	overheads	are	negligible	or	deemed	to	be	included	

in	task	computation	times
6. Critical	instant - defined	as	the	maximum	load	condition	when	

all	tasks	release	together

• Constraints
1. Deadline	=	period
2. fixed	set	of	tasks
3. Preemptive



Scheduling	with	Aperiodic	Tasks

• the	simple	task	model	that	we	have	been	able	to	
deal	with	thus	far	is	restrictive	in	several	ways.	
Not	being	able	to	handle	aperiodic	tasks	is	a	
major	restriction.

• one	approach	is	to	make	aperiodic	(or	sporadic)	
tasks	resemble	periodic	tasks
– consider	that	an	asynchronous	task’s	minimum	inter-
arrival	time	can	be	treated	like	a	period,	T

– with	just	this	assumption	one	can	use	response	time	
analysis	for	both	types	of	tasks



Scheduling	with	Aperiodic	Tasks

• the	simple	task	model	assumption	that	D=T is	
unrealistic	for	aperiodic	tasks
– typically,	an	aperiodic	task	will	occur	infrequently	
(large	inter-arrival	time)	but	must	be	serviced	
quickly	(D	<	T)

– therefore	priority	assignment	based	upon	the	
period	(T)	will	usually	not	satisfy	the	requirement	to	
meet	the	deadline	(D)	



Deadline	Monotonic	Priority	Ordering

• deadline	monotonic	priority	ordering	(DMPO)	
scheme	is	introduced	as	follows:
– the	shorter	the	task	deadline,	the	higher	the		
priority	

Tasks ei pi Di Pi Ri	

1 3 20 5
2 3 15 7
3 4 10 10
4 3 20 20



Deadline	Monotonic	Priority	Ordering	
(Example	2)

• deadline	monotonic	priority	ordering	(DMPO)	
scheme	is	introduced	as	follows:
– the	shorter	the	task	deadline,	the	higher	the		
priority	

Tasks ei pi Di Pi Ri	

1 3 20 5 1
2 3 15 7 2
3 4 10 10 3
4 3 20 20 4



Deadline	Monotonic	Priority	Ordering

• deadline	monotonic	priority	ordering	(DMPO)	
scheme	is	introduced	as	follows:
– the	shorter	the	task	deadline,	the	higher	the		
priority	

Tasks ei pi Di Pi Ri	

1 3 20 5 1 3
2 3 15 7 2 6
3 4 10 10 3 10
4 3 20 20 4 20



Response	Time	Analysis
Example	3	

• use	RM	scheduling
• apply	the	utilization	based	schedulabilty test
• use	Response	Time	Analysis	to	determine	
whether	the	system	is	schedulable

Tasks ei pi Pi

1 3 7
2 3 12
3 5 18
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