
EEE499	- Real-Time	Embedded	
System	Design

Schedulability Part	2

RM	Least	Upper	Bound	(RM	LUB)

U:	Utilization	of	the	CPU	that	is	achievable
ei:	Execution	time	of	task	i
m:	Total	number	of	tasks	sharing	common	CPU	

resources
pi:	Release	period	of	task	i

𝑈 =#(𝑒&	/𝑝&

*

&+,

) ≤ 𝑚(2
1
*	 − 1)

Response	Time	Analysis

• a	disadvantage	of	utilization	based	
schedulability testing	for	RM	LUB	is	that	it	is	
sufficient	but	not	necessary

• to	supplement	this	test,	we	introduce	the	
notion	of	Response	Time	Analysis	

Response	Time	Analysis

Response	time	analysis	allows	to:	
– predicts	the	worst	case	response	time	for	each	task	
– compare	each	task’s	response	time	to	its	deadline

If	all	worst	case	response	times	are	less	than	their	
respective	deadlines,	the	system	is	schedulable

Response	Time

Ji

Response	time

Time

Release	time,	ri

Relative	deadline,	Di

Completion	time

Absolute	deadline,	di

Ji

interference

+
Execution	time

Response	Time

S2

S1

t0 2 4 531 6

T1

T2

S1=	(2,1)
S2=	(5,2)

#1 #2 #3

Response	Time

R2 =	e2 +	e1,1 +	e1,2
R2 =	2	+	1	+	1	=	4

I1

Response	Time

Response	time	of	a	task	is	defined	to	be	the	sum	
of	its	own	worst	case	execution	time	and	its	
maximum	interference

Ri =	ei +	Ii (1)
where	Ii is	the	maximum	interference* that	task	i can	
experience	in	any	time	interval	[t,	t	+	Ri)		

*The	condition	for	maximum	interference	occurs	when	all	
higher	priority	tasks	are	released	at	the	same	time	as	task	i,	
the	critical	instant.

Counting	Releases
• consider	task	i and	a	higher	priority	task	j
• now,	the	number	of	releases of	task	j	in	time	
interval	0	to	Ri can	be	derived	as	follows:

#	of	releases	j =	⎡Ri/pj⎤ (2)
[0, Ri)

0 100 200

j

i

40

40

40

5

TiTj Ri

Determining	Interference

• from	this,	the	maximum	interference	of	task	j	
on	task	i in	interval	0	to	Ri is	given	by:

interferencemax=	⎡ Ri/pj ⎤ ej (3)

• but	there	may	be	other	higher	priority	tasks,	
therefore:	

(4)

[0, Ri)

𝐼& =# 𝑅& 𝑝67 𝑒6

8

6+1
where P(j)	<	P(k)

Calculating	Response	Time

• substituting	equation	(4)	into	(1)	gives	the		
general	expression	for	response	time:

(5)

• note	the	following	issue	(problem):
– Ri is	on	both	sides	of	this	equation	

𝑅& = 𝑒& +	#
𝑅& 𝑝67 𝑒6

8

6+1

Understanding	Response	Time	
(Example	1	from	last	class)

RC =		eC +	⎡ RC/pA ⎤ eA+ ⎡ RC/pB ⎤ eB
=		60		+		2(20)	+		1(30)	

=		130

0 100 200

A

B

C

RC = 130

CA, TA CB, TB CC, TC

System = {(20, 100), (30, 150), (60, 200)}

Calculating	Response	Time
• essentially,	form	a	recursive	relationship	with	Equation	
(5)	and	solve	iteratively:	

(6)

where	initial	(seed)	value	

• the	algorithm	is	then	to	solve	for	successive	values	of	
wi

n+1 until	wi
n+1 =		wi

n ,	then	solution	found	->	Ri=	wi
n	

if	Ri >		Di ,	then	task	i can	not	meet	its	deadline

𝑤&;<1 = 𝑒& + 	#
𝑤&; 𝑝6= 𝑒6

8

6+1

𝑤&, = 𝑒&

Calculating	Response	Time
Example	1

Is	it schedulable?

Tâche ei pi Pi Ui

A 40 80

B 10 40

C 5 20

Calculating	Response	Time

Is	it schedulable?

Tâche ei pi Pi Ui

A 40 80 3

B 10 40 2

C 5 20 1

Calculating	Response	Time

Is	it schedulable?
U	=	1	>	0.779

Tâche ei pi Pi Ui

A 40 80 3 0.5

B 10 40 2 0.25

C 5 20 1 0.25

Simple	Task	Model
• Assumptions:

1. Tasks	are	periodic	and	the	period	is	constant
2. Completion-time	<	period
3. Tasks	are	independent
4. Runtime	is	known	and	deterministic
5. all	system	overheads	are	negligible	or	deemed	to	be	included	

in	task	computation	times
6. Critical	instant - defined	as	the	maximum	load	condition	when	

all	tasks	release	together

• Constraints
1. Deadline	=	period
2. fixed	set	of	tasks
3. Preemptive

Scheduling	with	Aperiodic	Tasks

• the	simple	task	model	that	we	have	been	able	to	
deal	with	thus	far	is	restrictive	in	several	ways.	
Not	being	able	to	handle	aperiodic	tasks	is	a	
major	restriction.

• one	approach	is	to	make	aperiodic	(or	sporadic)	
tasks	resemble	periodic	tasks
– consider	that	an	asynchronous	task’s	minimum	inter-
arrival	time	can	be	treated	like	a	period,	T

– with	just	this	assumption	one	can	use	response	time	
analysis	for	both	types	of	tasks

Scheduling	with	Aperiodic	Tasks

• the	simple	task	model	assumption	that	D=T is	
unrealistic	for	aperiodic	tasks
– typically,	an	aperiodic	task	will	occur	infrequently	
(large	inter-arrival	time)	but	must	be	serviced	
quickly	(D	<	T)

– therefore	priority	assignment	based	upon	the	
period	(T)	will	usually	not	satisfy	the	requirement	to	
meet	the	deadline	(D)	

Deadline	Monotonic	Priority	Ordering

• deadline	monotonic	priority	ordering	(DMPO)	
scheme	is	introduced	as	follows:
– the	shorter	the	task	deadline,	the	higher	the		
priority	

Tasks ei pi Di Pi Ri	

1 3 20 5
2 3 15 7
3 4 10 10
4 3 20 20

Deadline	Monotonic	Priority	Ordering	
(Example	2)

• deadline	monotonic	priority	ordering	(DMPO)	
scheme	is	introduced	as	follows:
– the	shorter	the	task	deadline,	the	higher	the		
priority	

Tasks ei pi Di Pi Ri	

1 3 20 5 1
2 3 15 7 2
3 4 10 10 3
4 3 20 20 4

Deadline	Monotonic	Priority	Ordering

• deadline	monotonic	priority	ordering	(DMPO)	
scheme	is	introduced	as	follows:
– the	shorter	the	task	deadline,	the	higher	the		
priority	

Tasks ei pi Di Pi Ri	

1 3 20 5 1 3
2 3 15 7 2 6
3 4 10 10 3 10
4 3 20 20 4 20

Response	Time	Analysis
Example	3	

• use	RM	scheduling
• apply	the	utilization	based	schedulabilty test
• use	Response	Time	Analysis	to	determine	
whether	the	system	is	schedulable

Tasks ei pi Pi

1 3 7
2 3 12
3 5 18

References

[1]	Siewert,	S.	Pratt,	J.	Real-Time	Embedded	
Components	and	Systems	with	Linux	and	
RTOS.	Mercury	Learning	and	Information,	
2016.

[2] Burns,	A.	and	Wellings,	A.,	“Real-Time	
Systems	and	Programming	Languages”,		
Chapter	13,	Addison	Wesley,	1997

[3]	TimeSysCorp,	“The	Concise	Handbook	of	
Real-Time	Systems”,	Version	1.0,	1999

