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Simple Task Model

* Assumptions:
L Tool odi el ol
Completion-time < period
Tasks areindependent
Runtimeis known and deterministic

all system overheadsare negligible or deemed to be included
in task computation times

Criticalinstant - defined as the maximumload conditionwhen
all tasks release together

o UAEWN

 Constraints

2. fixed set of tasks
3. Preemptive



Task Dependency

 Theassumptionthat tasks are independentis not reasonable
for all real systems

— Tasks normally share commonresources with semaphores and
monitors

— Tasks must often synchronize

* Tasks can be suspended fora future event that dependson
one or more other tasks

When will this dependence affect the schedulingcriterion?



Recall Response Time
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Blocking Time
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Priority Inversion

* Can occurwhen a high priority task and a low priority task
share a common resource

— Thelow priority task gets exclusive access to the shared
resource

— Higher priority task causes preemption of lowest priority
task but gets blocked while waiting for resource to be
released

— Meanwhile a medium priority task still causes the
preemption ofthe low priority task, further delayingthe
execution of the high priority task

 Thereisa priority override because the mediumtask is

guaranteed a higher priority service than the highest priority
task that is blocked



Priority Inversion
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Simple Priority Inheritance

* |sa techniqueto avoid the priority inversion

— A task getting a shared resource dynamically gets

the priority of the highest priority task with which
it sharesthe resource

— Inheritance occurs while the higher priority task
blocking on the shared resource



Simple Priority Inheritance
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Blocking Time
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Blocking Time
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Blocking Time

* The blocking time of the task ti is defined as
being

R

Bi =Y ulr,i)- Cs(r) (2)

r=1

— u(r,1) =1 1fresourcer is used by at least one taskpriority of less than
1 and at least one task (including 1) ofthigher priority thaniu (r,1) =0
otherwise

— and CS(r) is the execution time of the critical section k



Blocking Time

By combining equations (1) and (2) as well as
the equation for interference, we obtain:

k n R (3)
wy =6¢+; [f;—ﬂ '%Jrgu(?“ai)'CS(?“)

r=1

e We still have



Example of a simple priority
inheritance

_Task | e | 1| 0NN r | G0 | Taskusage
1 25 7

1 2 1,3,4
12 - 2 4 2,4

17
24

A U1 N W

2
3
4

e UseDMPO
* Applysimple priority inheritance
* |sthe set of tasks schedulable?



Deadlock

Although using simple priority inheritance will
limit the number of deadlocks of a task, it does

not prevent transitive blocking or deadlocks.

If the owning task is itself blocked on a second
lock, the owner of the second lock can also

inherit the priority of the task blocked on the
first lock.




lllustrated Transitive Blocking
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Ceiling Priority Protocol

each task has a static default priority

each resource has a static ceilingvalue, equal to the
maximum priority of the processes which use it

a task can lock a resource only if its dynamic priorityis
higher than the ceilingof any currently locked resource
(excludingany it already has locked)

Original: Immediate:
each taskhasa dynamic * each taskalsohas adynamic
priority, equal to the priority, equal to the
maximum of its own static maximum of its own static
priorityand anyit inherits priority and the ceiling values
due to blocking higher of anyresourcesit has locked
priority tasks




Ceiling Priority Protocol
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Blocking Time
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Ceiling Priority Protocols

e eliminate deadlock: if a low priority task shares 2
resources with a high priority task that can cause
dead lock, once it locks one of the resources, it can
not get preempted till release the resource,
because lower job get equal or higher priority
during locking.

* eliminate transitive blocking

— in fact, for any given task only a single blocking event
may occur, therefore

* use a modified blocking time equation:
B. = max {usage(k,i) CS(k)}  (3)

k=1



Exemple- Ceiling Priority

_Task | e | 1| 0NN r | G0 | Taskusage
1 25 7

3 1 2 1,3,4
2 2 12 - 2 4 2,4
3 5 17
4 6 24

e UseDMPO
* Apply Ceiling Priority Protocols
* |sthe set of tasks schedulable?
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