
EEE499	- Real-Time	Embedded	
System	Design

Schedulability Part	3



Simple	Task	Model
• Assumptions:

1. Tasks	are	periodic	and	the	period	is	constant
2. Completion-time	<	period
3. Tasks	are	independent
4. Runtime	is	known	and	deterministic
5. all	system	overheads	are	negligible	or	deemed	to	be	included	

in	task	computation	times
6. Critical	instant - defined	as	the	maximum	load	condition	when	

all	tasks	release	together

• Constraints
1. Deadline	=	period
2. fixed	set	of	tasks
3. Preemptive



Task Dependency
• The	assumption that tasks are	independent is not	reasonable

for	all	real	systems
– Tasks normally share commonresourceswith semaphores and	

monitors
– Tasksmust	often synchronize

• Tasks can be suspended for	a	future	event that dependson	
one	or	more	other tasks

Whenwill this dependence affect	the	schedulingcriterion?



Recall Response Time

Response Time

Time

Relase time

Relative	Dealline

Completion Time

Absolute Deadline

Ji Ji

+
ExecutionTime

Interference +	Blocking

Ri = ei + Ii + Bi

1

(1)



BlockingTime

t0 2 4 6 8 10

pr
ee
m
pt
io
n

Bl
co
ks
on
	a
	

Acquiert	a

Task1

Task	2 a

Acquiert	b

b

a

b
a

pr
ee
m
pt
io
n



Blocking Time

t0 2 4 6 8 10

pr
ee
m
pt
io
n

Bl
oc
ks
	o
n	
a

Acquiert	a

Task	1

Task	2 a

Acquiert	b

b

a

b
a

pr
ee
m
pt
io
n

u(a,1)	=	1
u(b,	1)	=	0

u(a,2)	=	0
u(b,	2)	=	0



Priority Inversion

t

Low

Middle

High

0 2 4 6 8 10

pr
ee
m
pt
io
n block

bocking

pr
ee
m
pt
io
n

Re
le
as
e	
th
e	
re
so
ur
ce

Ac
qu
isi
tio

n	
of
	th

e	
re
so
ur
ce



Priority Inversion
• Can	occur	when	a	high	priority	task	and	a	low	priority	task	

share	a	common	resource
– The	low	priority	task	gets	exclusive	access	to	the	shared	
resource

– Higher	priority	task	causes	preemption of	lowest	priority	
task	but	gets	blocked	while	waiting	for	resource	to	be	
released

– Meanwhile	a	medium	priority	task	still	causes	the	
preemption of	the	low	priority	task,	further	delaying	the	
execution	of	the	high	priority	task

• There	is	a	priority	override	because	the	medium	task	is	
guaranteed	a	higher	priority	service	than	the	highest	priority	
task	that	is	blocked



Priority Inversion

Source:	Wikipedia.org



Simple	Priority	Inheritance

• Is	a	technique	to	avoid	the	priority	inversion
– A	task	getting	a	shared	resource	dynamically	gets	
the	priority	of	the	highest	priority	task	with	which	
it	shares	the	resource

– Inheritance	occurs	while	the	higher	priority	task	
blocking		on	the	shared	resource



Pri 1

Simple	Priority	Inheritance

t

Low

Middle

High

0 2 4 6 8 10

pr
ee
m
pt
io
n blcoks

blocking

RelasesresourcesAc
qu
isi
tio

n	
of
	th

e	
re
so
ur
ce



Blocking	Time

t0 2 4 6 8 10

Task	1

Task	2

Task	3	

pr
ée
m
pt
io
n

Bl
oq
ue

su
r	a

Acquier a

a

b

a

b
a

pr
ée
m
pt
io
n

Acquiert b
u(a,1)	=	1
u(b,	1)	=	0

u(a,2)	=	0
u(b,	2)	=	0

?



Blocking	Time

t0 2 4 6 8 10

Task	1

Task	2

Task	3	

pr
ée
m
pt
io
n

Bl
oq
ue

su
r	a

Acquiert	a

a

b

a

b
a

pr
ée
m
pt
io
n

Acquiert	b
u(a,1)	=	1
u(b,	1)	=	0

u(a,2)	=	0
u(b,	2)	=	0

u(a,3)	=	1
u(b,	3)	=	0



Blocking	Time

• The	blocking	time	of	the	task	τi is	defined	as	
being

(2)

– u (r, i) = 1 if resource r is used by at least one taskpriority of less than 
i and at least one task (including i) ofhigher priority than iu (r, i) = 0 
otherwise

– and	CS	(r)	is	the	execution	time	of	the	critical	section	k

Bi =
Rÿ

r=1
u(r, i) · CS(r)

1



Blocking	Time

By	combining	equations	(1)	and	(2)	as	well	as	
the	equation	for	interference,	we	obtain:

(3)

• We	still	have

wn+1
i = ei +

kÿ

j=1

9
wn

i

Tj

:
· ej +

Rÿ

r=1
u(r, i) · CS(r)

1

Ri = ei + Ii + Bi

Bi =
Rÿ

r=1
u(r, i) · CS(r)

where u(r, i) = 1 if

wn+1
i = Ci +

kÿ

j=1

9
wn

i

Tj

:
· Cj +

Rÿ

r=1
u(r, i) · CS(r)

where w0
i = ei

1



Example	of	a	simple	priority	
inheritance

• Use	DMPO
• Apply	simple	priority	inheritance
• Is	the	set	of	tasks	schedulable?

Task ei Ti Di

1 3 25 7
2 2 12 -
3 5 17 -
4 6 24 -

r CS(r) Task Usage
1 2 1, 3,	4
2 4 2, 4



Deadlock	

Although	using	simple	priority	inheritance	will	
limit	the	number	of	deadlocks	of	a	task,	it	does	
not	prevent	transitive	blocking	or	deadlocks.

If	the	owning	task	is	itself	blocked	on	a	second	
lock,	the	owner	of	the	second	lock	can	also	
inherit	the	priority	of	the	task	blocked	on	the	
first	lock.



Illustrated	Transitive	Blocking

0 2 4

T3

T1

T2

6 8

π=3

π=2

π=1 π=1

π=1 π=1

L(R1)

L(R2)

L(R1) L(R2)

π=1
U(R2)

π=3

π=2

U(R2) U(R1)

π=2

U(R1)

π=3



Deadlock

t0 2 4 6 8 10

pr
ee
m
pt
io
n

Blocks	on	a

Ac
qu
isi
tio

n	
of
	th

e	
re
so
ur
ce

a

Task1	1

Task	2 a

Acquisition	of	the	resource b

b

a Blcoks on	b



Ceiling	Priority	Protocol

Original:
• each	taskhas	a	dynamic	
priority,	equal	to	the	
maximum	of	its	own	static	
priority	and	any	it	inherits	
due	to	blocking higher	
priority	tasks

Immediate:
• each	task	also	has	a	dynamic	
priority,	equal	to	the	
maximum	of	its	own	static	
priority	and	the	ceiling	values	
of	any	resources	it	has	locked

• each	task	has	a	static	default	priority
• each	resource has	a	static	ceilingvalue,	equal	to	the	
maximum	priority	of	the	processes	which	use	it

• a	task	can	lock	a	resource	only	if	its	dynamic	priority	is	
higher	than	the	ceiling	of	any	currently	locked	resource	
(excluding	any	it	already	has	locked)



Ceiling	Priority	Protocol

t0 2 4 6 8 10

pr
ee
m
pt
io
n

Can	not	acquire	b

Ac
qu
ie
raTask	1

Task	2 a

Acquire b	plus	a

a b

b a



Blocking Time

t0 2 4 6 8 10

pr
ee
m
pt
io
n

Can	not	acquire	b

Ac
qu
ie
raTask	1

Task	2 a

Acquire b	plus	a

a b

b a



Ceiling	Priority	Protocols

• eliminate	deadlock	:	if	a	low	priority	task	shares	2	
resources	with	a	high	priority	task	that	can	cause	
dead	lock,	once	it	locks	one	of	the	resources,	it	can	
not	get	preempted	till	release	the	resource,	
because	lower	job	get	equal	or	higher	priority	
during	locking.		

• eliminate	transitive	blocking
– in	fact,	for	any	given	task	only	a	single	blocking	event	
may	occur,	therefore

• use	a	modified	blocking	time	equation:
Bi =		max	{usage(k,	i )	CS(k)} (3)

k=1

K



Exemple- Ceiling	Priority	

• Use	DMPO
• Apply		Ceiling	Priority	Protocols
• Is	the	set	of	tasks	schedulable?

Task ei Ti Di

1 3 25 7
2 2 12 -
3 5 17 -
4 6 24 -

r CS(r) Task Usage
1 2 1, 3,	4
2 4 2, 4



Références
[1]	 Lee,	E.	A.,	Seshia,	S.	A.	“Introduction	to	

Embedded	Systems	- A	Cyber-Physical	Systems	
Approach”,	Second	Edition,	MIT	Press,	2017.	

[2] Burns,	A.	and	Wellings,	A.,	“Real-Time	Systems
and	Programming Languages”,		Chapter 13,	
Addison	Wesley,	1997

[3] Gomaa,	H.,	“Software	Design	Methods for	
Concurrent	and	Real-Time	Systems”,	Addison-
Wesley,	1993.


