Y 4
FLECTRICAL & COMPUTER GENIE ELECTRIQUE
E ING ET GENIE INFORMATIQUE
COLLEGE MILITAIRE ROYAL DU CANADA

EEE499 - Real-Time Embedded
System Design

Introduction to Real-Time Operating
Systems

Outline

Operating Systems VS Real-time Operating

Systems ?
Basic Requirements of an RTOS
Characteristics of RTOS

Examples of RTOS

Operating Systems?

OS is set of system software that manages
hardware and software resources and provides
common services for other applications.

Hardware

Why Operating Systems?

e Operating system provides a layer of
abstraction between the users and the system

— it hides the complexities of the system’s resources
fromthe programmer

— Free the applications programmer from writing
code for task scheduling and dispatching and etc.

— it allows the computer to be treated as a virtual
machine

Real-Time OS

* An RTOS is a class of operating systems that are
designed to meet real time-applications
requirement. It means it must be predictable and
guarantees the timing constraints.

 RTOS usually directly deals with hardware, whereas
the general purpose OS which use drivers to access
the hardware.

Typical Requirements of a OS

* multi-tasking
— single processor -> quasi-concurrent tasks
— typical # of tasks - 32, 64, 128, 256 or unlimited

e scheduling
— creation/deletion and scheduling policy of tasks
— time slice/round robin (equal priority)
— static priority versus dynamic priority

* multiprocessorsupport

— more advanced features
— non-traditional

Typical Requirements of a OS

e control of shared resources
— mutual exclusion mechanisms
— semaphores, monitors

* inter-taskcommunication/synchronization
— synchronous and asynchronous data transfer
— mailboxes and queues

°* memory management

— minimal for diskless systems

Typical Requirements of a RTOS

ROMable

— embed into product

scalable

— conditional compilation, optimization
— add-ons, plug-ins

reliable

— robust, well established, well tested

deterministic

— execution time of all services and functions known and
published

Typical Requirements of a RTOS

source code support
— traditionally Assembly, C, Ada
— todayC++, Java

target support
— micro-controller market versus DSP versus PC
— 60k, PowerPC, .../ TIDSPs ... / x86, SPARC

tool support

— debuggers, compilers, linkers, 3rd party
— visibility tools (MicroC- Probe)

TCP/IP support

— distributed RTS support

Characteristics of RTOS

small kernel footprints (this varies a lot)
— 2.5k - 400k ROM / 0.5k - 30k RAM
RAM per thread / queue
— 50/30 bytes - 1k/200 bytes
schedulingpolicies
— round-robin, fixed priority, dynamic priority
— priorityinversionsupport
thread switchingtimes
— 10usec - 1000 clock cycles (~350 nsec on a 2.8GHz processor)
costs (USS)
— $69.95 (source included) -$25,000 per seat

Advantages & Disadvantages
of using a RTOS

* Advantages
— Simplifies design
— Facilitates application expansion (scalability)
— Provides a set of commonly used “built-in” services
— Deterministic (hopefully)

* Disadvantages
— Extra overhead (2-4% is typical)
— Cost

— Potential increased complexity
* Therearecaseswherean RTOS is “over-kill”

RTOS Examples - VxWorks

It is commercial
1.5 billion embedded devices use it

— world’s most widely deployed proprietary RTOS
Supports lots of CPU architectures: ARM, PowerPC, Intel, etc
Support forequal priority

* Uses both priority-based preemption or round-robin scheduling

Basicset of task communication
No memory protection

RTOS Examples - QNX

Commercial, was acquired by BlackBerry in 2010

Supportslots of CPU architectures: ARM, PowerPC,
Intel, etc

QNX was one of the first commercially
successful microkernel operating systems used in
cars and mobile phone.

Small memory footprint

Dynamically start & stop filesystems, network, serial,
etc.

Bootable from ROM

RTOS Examples- RTLinux

— Is Linux

— Runs on anything, even toasters

— Hardware supportfor anything

— Isn’t technically real-time, but can be

User Process

I 1

R-T R-T System Call Interface

: A i Linux Kernel
[.

|

i
g F - -
I| Device Drivers

I Vo I
l LT RTLinux Plugin
| |Hardwvare Interrupts|

RTOS Examples - FreeRTOS

Leading open source RTOS
Key features:

— Preemptive and co-operative scheduling,
Multitasking, Services, Interrupt management, MMU;
Supports stacks for TCP/IP, USB, & basic file systems

Highly portable C, 24 architectures supported, Ports are
freely available in source code

Scalable:

— Only use the services you need by specifyingin
FreeRTOSConfig.h

— Minimum footprint = 4KB

References

[1] Cooling, J.E., “Software Design for Real-time
Systems”, Chapters 1 & 9.

[2] Labrosse, J.J., “MicroC/OS-11”, Chapter 2.

[3] Furht et al, “Real-Time UNIX Systems”,
Chapter 2.

[4] Greenfiled J.D., “The 68HC11 Microcontroller”
Chapter 3.

[5] http://www.realtime-info.be/encyc/...

