
EEE499	- Real-Time	Embedded	
System	Design

Introduction	to	Real-Time	Operating	
Systems

Outline

• Operating	Systems	VS	Real-time	Operating	

Systems	?

• Basic	Requirements	of	an	RTOS

• Characteristics	of	RTOS

• Examples	of	RTOS

Operating	Systems?
OS	is set	of	system	software	that	manages	
hardware	and software	resources	and	provides	
commonservices	for other	applications.	

Why	Operating	Systems?

• Operating	system	provides	a	layer	of	
abstraction	between	the	users	and	the	system	
– it	hides	the	complexities	of	the	system’s	resources	
from	the	programmer

– Free	the	applications	programmer	from	writing	
code	for	task	scheduling	and	dispatching	and	etc.

– it	allows	the	computer	to	be	treated	as	a	virtual	
machine

Real-Time	OS

• An	RTOS	is	a	class	of	operating	systems	that	are	
designed	to	meet	real	time-applications	
requirement.	It	means	it	must	be	predictable	and	
guarantees	the	timing	constraints.

• RTOS	usually	directly	deals	with	hardware,	whereas	
the	general	purpose	OS	which	use	drivers	to	access	
the	hardware.	

Typical	Requirements	of	a	OS

• multi-tasking
– single	processor	->	quasi-concurrent	tasks
– typical	#	of	tasks	- 32,	64,	128,	256	or	unlimited

• scheduling
– creation/deletion	and	scheduling	policy	of	tasks
– time	slice/round	robin	(equal	priority)	
– static	priority	versus	dynamic	priority

• multiprocessor	support
– more	advanced	features
– non-traditional

Typical	Requirements	of	a	OS

• control	of	shared	resources
–mutual	exclusion	mechanisms
– semaphores,	monitors	

• inter-task	communication/synchronization
– synchronous	and	asynchronous	data	transfer
–mailboxes	and	queues

• memory	management
–minimal	for	diskless	systems

Typical	Requirements	of	a	RTOS

• ROMable
– embed	into	product

• scalable
– conditional	compilation,	optimization
– add-ons,	plug-ins

• reliable
– robust,	well	established,	well	tested

• deterministic
– execution	time	of	all	services	and	functions	known	and	
published

Typical	Requirements	of	a	RTOS

• source	code	support
– traditionally	Assembly,	C,	Ada
– today	C++,	Java

• target	support
– micro-controller	market	versus	DSP	versus	PC
– 60k,	PowerPC,	…	/	TI	DSPs	…	/	x86,	SPARC

• tool	support
– debuggers,	compilers,	linkers,	3rd	party
– visibility	tools	(MicroC- Probe)

• TCP/IP	support
– distributed	RTS	support

Characteristics	of	RTOS

• small	kernel	footprints	(this	varies	a	lot)
– 2.5k	- 400k	ROM	/	0.5k	- 30k	RAM

• RAM	per	thread	/	queue
– 50/30	bytes	- 1k/200	bytes

• scheduling	policies
– round-robin,	fixed	priority,	dynamic	priority
– priority	inversion	support

• thread	switching	times
– 10µsec	- 1000	clock	cycles	(~350	nsec on	a	2.8GHz	processor)

• costs	(US$)
– $69.95	(source	included)	- $25,000	per	seat

Advantages	&	Disadvantages	
of	using	a	RTOS

• Advantages
– Simplifies	design	
– Facilitates	application	expansion	(scalability)
– Provides	a	set	of	commonly	used	“built-in”	services
– Deterministic	(hopefully)

• Disadvantages
– Extra	overhead	(2-4%	is	typical)
– Cost	
– Potential	increased	complexity

• There	are	cases	where	an	RTOS	is	“over-kill”

RTOS	Examples	- VxWorks

• It	is	commercial
• 1.5	billion	embedded	devices	use	it

– world’s	most	widely	deployed	proprietary	RTOS
• Supports	lots	of	CPU	architectures:		ARM,	PowerPC,		Intel,	etc
• Support	for	equal	priority

• Uses	both	priority-based	preemption	or	round-robin	scheduling
• Basic	set	of	task	communication
• No	memory	protection

RTOS	Examples	- QNX

• Commercial,	was	acquired	by BlackBerry	in	2010
• Supports	lots	of	CPU	architectures:		ARM,	PowerPC,		
Intel,	etc

• QNX	was	one	of	the	first	commercially	
successfulmicrokernel	operating	systems	used	in	
cars	and	mobile	phone.

• Small	memory	footprint
• Dynamically	start	&	stop	filesystems,	network,	serial,	
etc.

• Bootable	from	ROM

RTOS	Examples- RTLinux
– Is	Linux
– Runs	on	anything,	even	toasters
– Hardware	support	for	anything
– Isn’t	technically	real-time,	but	can	be

RTOS	Examples	- FreeRTOS

• Leading	open	source	RTOS
• Key	features:	
– Preemptive	and	co-operative	scheduling,	
Multitasking,	Services,	Interrupt	management,	MMU;	
Supports	stacks	for	TCP/IP,	USB,	&	basic	file	systems

• Highly	portable	C,	24	architectures	supported,	Ports	are	
freely	available	in	source	code

• Scalable:	
– Only	use	the	services	you	need	by	specifying	in	
FreeRTOSConfig.h

– Minimum	footprint	=	4KB	

References

[1]	Cooling,	J.E.,	“Software	Design	for	Real-time	
Systems”,	Chapters	1	&	9.

[2]	Labrosse,	J.J.,	“MicroC/OS-II”,	Chapter	2.
[3]	Furht et	al,	“Real-Time	UNIX	Systems”,	
Chapter	2.

[4]	Greenfiled J.D.,	“The	68HC11	Microcontroller”	
Chapter	3.

[5]	http://www.realtime-info.be/encyc/...

