
EEE499	- Real-Time	Embedded	
System	Design

Software	Fault	Tolerance

Failures

• when	the	behavior	of	a	system	deviates	from	that	
of	its	specification.

• normally	associated	with	the	notion	that	
something	which	once	functioned	properly,	no	
longer	does	so.		

• in	this	classical sense,	software	does	not	truly	fail;	
if	the	software	does	the	wrong	thing,	it	will	
always	do	the	wrong	thing	under	identical	
circumstances

Failures	&	Specifications

• traditionally	(software)	requirements	are	viewed	
as	a	positive specification	of	a	system

• an	attempt	to	define	the	failures	of	a	system	can	
be	viewed	as	a	negative specification	of	a	system

• while	both	are	likely	essential,	the	latter	is	rarely	
formally	identified	in	projects
– system	engineers	will	often	need	the	failure	
definitions

Faults

• an	unsatisfactory	condition	or	state
– actions,	timing,	sequence	or	amount

• random	faults - in	the	context	of	above,	
failures	are	random	faults	which	occur	when	a	
component	breaks	in	the	field.	Random	faults	
only	occur	in	physical	entities.

• systematic	faults - are	intrinsic	in	the	design	or	
implementation	of	a	component.	Errors	or	
software	defects	(bugs)	are	systematic	faults.

Faults	(cont’d)

• hardware	- faults	can	be	random	or	systematic
– traditional	bath-tub	curve	phenomenon

• software	- faults	are	always	systematic	
– software	neither	breaks	nor	wears	out
– all	software	contains	latent	defects	(bugs)
– estimates:
• 20,000	defects	per	Million	LOC
• 90%	found	in	testing
• 200	found	in	early	life
• 1800	latent	defects	(0.18%	defect	rate)

Failure	Modes

• the	classification	of	a	system’s	failures	
according	to	the	impact	they	have	on	the	
services	it	delivers.

• software	failure	modes:
– value	domain	
– timing	domain	- early,	omission,	late
– arbitrary	(combination	of	value	and	timing)

Failure	Types

• single	point	failures - the	failure	of	a	system	
due	to	a	single	component	failure.	
– h/w: car	brake	master	cylinder
– s/w:?

• common	cause	failures - the	failure	of	more	
than	one	component	due	to	a	common	event	
or	cause.
– h/w:	 power	supply	failure
– s/w:?

Fault	Prevention

• fault	avoidance - limit	the	introduction	of	faulty	
components	during	construction
– rigorous	(formal)	specifications
– proven	design	methodologies
– proper	selection	of	programming	language
– engineering	/	development	environments	(IDEs)

• fault	removal - finding	and	removing	causes	of	
error
– reviews,	inspections,	testing,	verification,	validation

• but	what	if	faults	can	not	be	prevented?

Fault	Tolerance

• the	ability	of	a	system	to	continue	functioning	
even	in	the	presence	of	faults.
– full	fault	tolerance - system	continues	to	operate	
with	no	significant	loss	of	functionality	(for	a	
limited	time)	

– graceful	degradation - system	continues	to	operate	
but	in	a	degraded	mode

– fail	safe - system	transitions	to	a	safe	state	prior	to	
shut-down	or	as	a	result	of	a	particular	fault

Redundancy

• in	order	to	achieve	fault	tolerance	in	software	
some	degree	of	redundancy is	required.								
– {In	this	sense,	the	definition	of	redundancy	extends	
to	include	additional	code	that	would	not	be	
required	for	normal	operation}		

• goal	- minimize	redundancy,	maximize	R(t)
• paradox	- too	much	may	decrease	R(t)

Static	Redundancy

• redundant	components	are	used	to	mask	errors
• h/w:	N	Modular	Redundancy	(NMR)

• s/w:	N-version	programming
– N	redundant	versions	of	the	same	module	under	a	
common	controller	and	a	voting	scheme		

Static	Redundancy

• assumptions
– complete,	consistent,	unambiguous	specification
– independent	failure	modes
• separate	development	teams,	processors,	languages,	
fault-tolerant	communication	lines,	…

• issues	(problems)
– specifications	are	a	major	contributor	to	defects
– independence	is	often	not	a	reasonable	
assumption

– $$$	

Dynamic	Redundancy

• redundant	components	used	to	detect	errors
• h/w:	data	parity	bit	checks

• s/w:	recovery	blocks
• phases
– error	detection
– damage	assessment/control
– error	recovery
– fault	treatment/continue

RP1

RP2

RP3

recovery points

Process P1

Dynamic	Redundancy

• assumptions
– alternate	modules	only	execute	based	upon	error	
detection

– still	largely	dependent	upon	the	specification
– known	and	unknown	failure	modes	may be	
handled	

• issues	(problems)
– backward	error	recovery	can’t	always	undo	damage
– $$

A	Few	Fault	Tolerance	Patterns

• Homogeneous	Redundancy	Pattern
– protects	against	hardware	(random)	failures	only

• Diverse	Redundancy	Pattern
– protects	against	systematic	&	random	faults

• Monitor	Actuator	Pattern
– specialization	of	diverse	redundancy

• Watchdog	Pattern

Homogeneous	Redundancy	Pattern

Homogeneous	Redundancy	Pattern

Diverse	Redundancy	Pattern

Monitor-Actuator	Pattern

Monitor-Actuator	Pattern

Watchdog	Pattern

Watchdog	Pattern

Can be hardware or software

Reliability

• reliability,	R(t)	- the	probability	that,	when	
operating	under	stated	environmental	conditions,	
a	system	will	perform	its	intended	function	
adequately	for	a	specified	interval	of	time.	

• a	measure	of	the	success	with	which	a	system	
conforms	to	some	authoritative	specification	of	
its	behavior

• most	frequent	hardware	metric	- MTBF
– failure	rate	is	more	universal	in	software	

Reliability	&	Time
• as	stated	in	its	definition,	reliability	is	evaluated	
on	a	time	interval
– R(t	=	6	hours)	=	95%

• in	terms	of	software	reliability,	we	must	
distinguish	three	forms	of	time:
– calendar	time	- standard	elapsed	time
– clock	time	- the	time	a	processor	is	actually	running	
during	any	calendar	time

– execution	time- the	time	any	software	program	is	
executing	on	the	given	processor

Reliability	&	Environment

• again,	as	stated	in	its	definition,	reliability	is	a	
function	of	the	operational	environment
– more	commonly	used	is	a	system’s	operational	profile

• an	operational	profile	of	a	piece	of	software	is	a	
representation	of	the	various	input	states	and	their	
respective	probabilities
– often	these	profiles	can	be	further	divided	along	modes	
of	operation	

– for	example	an	application	has	a	different	profile	during	
start-up	mode	than	in	full	operation

• test	cases	/	test	data	is	selected	accordingly

Reliability	Definition

• reliability,	R(t)	- the	probability	that,	when	
operating	under	stated	environmental	conditions,	
a	system	will	perform	its	intended	function	for	a	
specified	interval	of	time.	

• reliability	is	evaluated	on	a	time	interval
– R(t	=	6	hours)	=	95%

• thus,	reliability	is	a	function	of	some	failure	rate	
(intensity)	and	a	desired	time	interval

Uses	of	Reliability

• a	measure	of	development	status
– given	a	reliability	goal	(a	set	failure	rate),	you	may	
determine	remaining	schedule,	costs,	tests,	etc	prior	
to	release	of	the	software

• to	monitor	operational	performance
– is	the	reliability	such	that	major	maintenance	is	
justified

• provides	insight	into	the	software	product	
(quality)	and	the	development	process

Quantifying	Component	Reliability

• Given	components	from	a	Homogeneous	
Poisson	Process	with	a	failure	intensity	(λ),	
then	reliability	can	be	expressed	as:

R(T)	=	e	- λT
R

el
ia

bi
lit

y

Time

1.0
reliability decreases
exponentially with
“mission” time

Component	Reliability	- Example	1

• Assume	that	a	capacitor	has	been	tested	and	
determined	to	have	a	mean-time-between-
failure	(MTBF)	of	200	hours,
– what	is	the	probability	that	the	capacitor	will	not	
fail	during	8	hours	of	(normal)	use	in	the	lab?	

Solution:

λ = 1/ MTBF = 0.005 failures per hour

R(T=8 hours) = e -(0.005)(8)

= 0.961 or 96.1%

Component	Reliability	- Example	2

• Given	an	unmanned	space	probe	with	a	
requirement	to	operate	failure	free	for	a	25	
year	mission	with	a	probability	of	95%,
– what	is	the	required	system	MTBF?

Solution:

λ = - ln (R(T)) / T

= -ln(0.95) / [(25)(365)(24)]

= 0.0000002 failures per hour

MTBF = 5,000,000 hours!

Software	Failure	Intensity

• As	most	software	reliability	values	are	stated	
in	terms	of	execution	time,	we	need	to	be	able	
to	convert	these	values	to	clock	time:
– if	we	define:
• execution	time	as	λτ
• clock	time	as	λt,

– then, λt		=	ρc		λτ

– where, ρc	 represents	average	utilization	

Software	Failure	Intensity	- Example

• Given	a	periodic	task	with	an	estimated	one	
hour	(execution	time)	reliability	of	99.5%.		In	
addition,	we	know	the	task	runs	every	200	
msec	with	an	average	computation	time	of	
2000	µsec.
– determine	the	clock-time-based	failure	intensity
λτ = - ln(R(τ=1))/τ = - ln(0.995)/1 = 0.005 f/hr

λt = ρc λτ = (0.01) (0.005) = 0.00005 f/hr

System	Reliability	- Serial	Systems

• Rsys =			Π Ri for	all	i	components

• Example	
– Given	RA =	90%,	RB =	97.5%,	RC =	99.25%
– Rsys =	(.9)(.975)(.9925)	=		87.1	%

*Assumes that all components are reliability-wise independent.

A B C

Serial	Systems	- Example

• Given	a	space	probe	with	10,000	identical	
components	and	a	25	year	95%	reliability	
requirement:
– what	is	the	required	component	failure	rate?

c1 c2 c10000•••

Solution:

RC = (Rsys)1/10000 = 0.999995

λc = -ln(.999995)/[(25)(365)(24)] = 2.28 E-11

• Define	the	probability	of	
failure	as	Qi	=	1- Ri,	then

• Qsys =			ΠQi	

– it	follows	that	Rsys =	1	– Qsys,	or

• Rsys =		1	-Π (1	- Ri)

System	Reliability	- Parallel	Systems

A

B

C

§ Example
§ Given RA = 90%, RB = 97.5%, RC = 99.25%
§ Rsys = 1 - (.1)(.025)(.0075) = 99.998%

• a	special	case	of	the	parallel	
system	configuration	
wherein	it	is	required	that	
only	k	out	of	n	identical	
components	are	needed	for	
success

• Rsys =		Σ []	Rci (1	- Rc)n-i

System	Reliability	- k	out	of	n

A

A

A
n
ii=k

n

§ where “n choose k”, [] = n! / (k!(n-k)!) n
k

• Example
– assume	that	the	reliability	of	
c1 is	90%	and	you	need	at	
least	two	for	the	system	to	
function

System	Reliability	- k	out	of	n

c1

c1

c1

solution:

Rsys = Σ [] Rc
i (1 - Rc)3-i

= [] Rc
2 (1 - Rc) + [] Rc

3 (1 - Rc)0

= (3)(.81)(.1) + (1)(.729)(1)

= 97.2%

3
ii=2

3

3
2

1
3
3

Exercise	- System	Components	
• Consider	an	EW	system	made	up	of	the	following	

components:
– 2	touch	displays,	only	one	of	which	need	function	for	the	system	to	

function
– each	touch	display	contains	identical software	(meaning	that	you	

should	treat	the	s/w	as	a	stand-alone	module)
– one	system	processor	and	the	system	integration	software
– an	ECM	with	embedded	jammer	software

• Assume	that	all	hardware	utilization	is	100%
– in	other	words	all	hardware	functions	for	the	entire	mission	duration

Exercise	- Component	Data

Component Failure Rate
(execution hours)

Utilization R(t=4)

TD - - .95

TD s/w 0.002 0.65 ?

SP - - .98

SP s/w .010 .95 ?

ECM - - .925

ECM s/w .012 .35 ?

Exercise	- Questions

• a)	Determine	the	overall	system	reliability	for	a	4	
hour	mission?

• b)	What	is	the	probability	of	having	at	least	one	
functional	display	for	a	2	hour	mission?

• c)	What	is	the	weakest	link	in	the	system?	What	
could	be	done	to	improve	the	overall	system	
reliability	(assuming	that	you	can	not	significantly	
change	the	component	reliabilities	without	
serious	redesign).	Draw	the	new	reliability	block	
diagram	and	find	Rsys

Exercise	- Questions	(continued)

• d)	Assume	that	we	now	have	4	equivalent	ECM	
subsystems	(combined	hardware	and	
software)	and	that	for	the	system	to	be	
functional	any	3	of	the	4	must	be	functional.

• Draw	the	new	reliability	block	diagram	and	
calculate	the	system	reliability.

References

[1]	Burns	and	Wellings,	“Real-Time	Systems	and	
Programming	Languages”,	Chap	5.

[2]	Douglass,	“Doing	Hard	Time:	Developing	Real-
Time	Systems	with	UML,	Objects,	Frameworks,	
and	Patterns”,	Chap	3.

[3]	Musa,	J.D.,	Iannino,	A.,	Okumoto,K.	“Software	
Reliability	- Measurement,	Prediction,	
Application”,	Chapter	4,	McGraw-Hill	1987.

