
EEE499	–Model-driven	
Development	of	Real-Time	Systems

UML-RT	and	Papyrus-RT:	
Structural	Modeling

Acknowledgement

The	original	material	for	this	section	was	
developed	by	Prof.	JuergenDingel (Queen’s	

University)

UML-RT	and	Papyrus-RT:	Sneak	Peek

UML-RT	 3

Modeling	
Languages

increasing	
generality

increasing	
domain-specifity

Examples	in	

UML

Stateflow
• Reactive	systems
• Discrete	control
• State-machine-based

AADL
• Embedded,	real-time

UML-RT
• Embedded,	real-time
• State-machine-based

UML	MARTE
• Embedded,	real-time

Simulink
• Continuous	control,	DSP	
• time-triggered	dataflow	

Lustre/SCADE
• Embedded	real-time
• Synchronous	dataflow

Modelica
• Physical	systems
• Equation-based

4UML-RT	

[Voelter 2013]

[Kelly,	Tolvanen 2008]

UML-RT:	History
• Real-time	OO	Modeling	(ROOM)

– ObjecTime,	early	1990	ties
• Major	influence	on	UML	2

– E.g.,	StructuredClassifier
• “RT	subset	of	UML”
• Tools

– ObjecTimeDeveloper
– IBM	Rational	RoseRT
– IBM	RSA-RTE
– Eclipse	Papyrus-RT

UML-RT	 5

[Selic, Gullekson, Ward.
Real-Time Object-Oriented
Modellng. Wiley. 1994]

UML-RT:	Characteristics
• Domain-specific

– Embedded	systems	with	soft	real-
time	constraints

• Graphical,	but	textual	syntax	exists
• Small,	cohesive	set	of	concepts
• Strong	encapsulation

– Actors	(active	objects)
– Explicit	interfaces
– Message-based	communication

• Event-driven	execution
– State	machines

UML-RT	 6

Real-time	System
• actors
• state

outputs =
f(state,inputs)

inputs

inputs

out2
out1
out2
…

in2
in2
…

in1
in1
…

UML-RT:	Core	Concepts	(1)
• Types

– Capsules	(active	classes)
• Capsule	instances	(parts)

– Passive	classes	(data	classes)
• Objects

– Protocols
– Enumerations

• Structure
– Attributes
– Ports
– Connectors

UML-RT	 7

§ Behaviour
• Messages	(events)
• State	machines

§ Grouping
• Package

§ Relationship
• Generalization
• Associations

UML-RT:	Core	Concepts	(2)
• Model	

– Collection	of	capsule	definitions	
– ‘Top’	capsule	containing	collection	of capsule	

instances	(parts)
• Capsules

– May	contain
• Attributes,	ports,	or	other	capsule	instances	(parts)

– Behaviour defined	by	state	machine
• Ports	

– Typed	over	protocol	defining	 input	and	output	
messages

• State	machine
– Transition triggered	by	incoming	messages
– Action	code	can	contain	send	statements	that	

send	messages	over	certain	ports

UML-RT	 8

Capsules	(1)

UML-RT	 9

• Kind	of	active	class
– Attributes,	operations
– Own,	independent	 flow																																														

of	control	(logical	thread)
• May	also	contain	

– Ports over	which	messages	can	be	sent	and	
received

– Parts (instances	of	other	capsules)	and	connectors	
• Creation,	use	of	instances	tightly	controlled

– Created	by	runtime	system	(RTS)	
– Cannot	be	passed	around	
– Stored	in	attribute	of	another	capsule	(part)
– Information	flow	only	via	messages	sent	to	ports
) better	concurrency	control	and	encapsulation

• Behaviour defined	by	state	machine

Passive	Classes/Data	Classes
• Similar	to	regular	classes
• Do	not	have	independent	flow	of	control
• Behaviour defined	through	operations
• Used	to	define	data	structures and	operations on	them

UML-RT	 CISC	836,	Winter	2018 10

Protocols

UML-RT	 11

• Provide	types	for	ports
• Define

– Inputmessages
• Services provided	by	capsule	owning	port

– Output	messages
• Services required	by	capsule	owning	port

– Input/output	messages
• Messages	can	carry	data

Ports

CISC	836,	Winter	2018 12

• “Boundary	objects”	owned	by	capsule
• Typed	over	a	protocol	P
• Have		‘send’		operation

portName.msg(arg1,...,argn).send()

• Can	be	
– base	(not	conjugated)

• Direction	of	messages	is	declared	in	protocol
• Notation:	

– textual:		P
– graphical:			¥

base

conjugated

• conjugated
o Direction	of	messages	declared		

in	protocol	is	reversed
o Notation

• textual:		~P
• graphical:		¤

UML-RT	

Connectors

UML-RT	 13

• Connect	two	ports	
• Ports	must	be	compatible

– Both	are	instances	of	same	protocol
– Either	(asymmetric)

• one	is	‘base’	(i.e.,	not	‘conjugated’)
– typically	owned	by	‘client’

• and	the	other	is	‘conjugated’
– typically	owned	by	‘server’

– Or	(symmetric)
• only	InOutmessages

Ports:	External,	Internal,	Relay
• External	behaviour

– Provides	(part	of)	externally	visible	functionality	(isService=true)
– Incoming	messages	passed	on	to	state	machine	(isBehaviour=true)
– Must	be	connected	(isWired=true)

• Internal	behaviour
– As	above,	but	not	externally	visible	(isService=false)
– Connect	state	machine	with	a	capsule	part

• Relay
– Pass	external	messages	to	and	from	capsule	parts

UML-RT	 14

relay		

internal

external

external	or	relay		

Ports:	System
• Connects	capsule	to	Runtime	System	(RTS)																																								

library	via	corresponding	system	protocol	
• Provides	access	to	RTS	services	such	as																																																															

– Timing:	setting	timers,	time	out	message
• timer2Port.informIn(UMLRTTimespec(10, 0));

// set timer that will expire in 10 secs and 0
nanosecs

• When	timer	expires,	‘timeout’	message	will	be	
sent	over	timer2Port

– Log:	sending	text	to	console
• logPort.log(“Ready to self-destruct”)

– Frame:	incarnate,	destroy	capsule	instances

UML-RT	 15

Application	code	
(generated	or	hand-written)

RTS	

Target	OS

Target	HW

Example:	PingPong

UML-RT	 16

Example:	Rover

UML-RT 17

Example:	Door	
Lock	System

UML-RT	 18

