EEE499 — Model-driven
Development of Real-Time Systems

UML-RT and Papyrus-RT:
Basic Behavioural Modeling

4 ;
FLECTRICAL & COMPUTER GENIE ELECTRIQUE
EERIN T EAIE INFORMATIE RMC £ CMR

Acknowledgement

The original material for this section was
developed by Prof. Juergen Dingel (Queen’s
University)

State Machines

States

— Capture relevant aspects of history of
object

— Determine how object can respond to
incoming messages

— May have invariants associated with them
Pseudo states

— Don’t belong to description of lifetime of
object

) object cannot be ‘in” a pseudo state

— Helper constructs to define complex state
changes

Transitions

— Describe how object can move from one
state to next in response to message input

UML-RT

VendingMachine

insertDollarl

kitkat
Gotl D@

insertDollar2

Got2Dollars

toblerone

AdaptiveCruiseControl

(i)

checkS

heckD
cnec \\ notTooFar

Decelerate
tooClose?

R notTooClose

checkA

Acceleratg

U

yesTooFar tooFar?

. srtates I: Simple and Pseudo

— Kinds:
--
* Later: (in hierarchical state
machines) St ~
— May Contain __---~ | /entry OpaqueBehavior setUp
. o . =T /
(written in actionlanguage) §
. . . State3
(ertten Inaction Ianguage) """ /exit OpaqueBehavior tearDown)
" Pseudo states| initial transition
e initial - :
oo initial ._>@/
® choice point state _)\
checkS
checkD _\ notTooFar

Decelerate = Z
tooClose?

TooCl
yesTooClose notTooClose

checkA

Accelerats

U

yesTooFar | toofar?
1

UML-RT choice point ' 4

Transitions

* Kinds:

— Basic

— Later: group (in hierarchical state machines)
e Consistsof

— Triggers
e Transitions out of (initial, choice)
* Transitions out of should have

— Guards (optional, written in action language)
* Transitions out of initial state should not haveguards
— Effect/Actions (optional, written in action language)

t[gl/a
81/ ’ <2
Trigger Guard Effect/Actions
Specifies port and Boolean condition that Code that is executed when
message must hold transition is taken

UML-RT

Transitions Into and Out of Pseudo States

e Initial

— Incomingtransition:impossible

— Outgoingtransition: no guard, no trigger, but can have action code
* Choicepoint

— Incomingtransitions: can have guard, triggers, action code

— QOutgoingtransitions:
* No trigger, but should have guard
* Guards should be
pairwise disjoint

(i.e., non-overlapping) TopShi

e Collection of guards

should be exhaustive
xIsLessZero
Initial [X<O] sEve
WaltForX
xReceived [x mod 2__0]

[X>0]
x__13] xIsl3

[not(x mod 2==0)]

UML-RT

Guards on Transitions out of Basic States

F StateMachine h

F StateMachine)

Playing
Playing

—-_—)—— - V) m——-- -

[hitCount<=3]
N J

.

T,
5
a
'
1
v
¢
l—
1=
5
a

N

return (hitCount>4);

return (hitCount<=3);

 Dangerous: Easyto make mistakes
— Hard to put triggerand guard info in name of transition
— Forgetthat guards are there, what exactly they are
— Have non-exhaustive or overlapping guards

* Better to use choice points

UML-RT

Action Language

 Languageused in
— guardstoexpress Booleanexpressions

— entry action, exit action, transition effects to read and update
attribute values, send messages

e Typically: C/C++, Java

State machines are a hybrid notation combining

» graphical notation for state machines and
e textual notation for source code in actions

UML and UML-RT State Machines

» differentfrom, e.g., Finite Automata
* closer to ‘extended hierarchical communicating state machines’ [6]

[6] R. Alur. Formal Analysis of Hierarchical State Machines. Verification: Theory and Practice. 2003.

UML-RT

Example: Action Code, Timers, Logging

(TrafficLightStateMachine B
GREEN YELLOW
] /entry /entry
- OpaqueBehavior OpaqueBehavior
timeout /L setTimer timeout setTimer
timeout
\. J

% ./TopMain.
"DefaultController”

Controller

Switched
tched

tched
tched

UML-RT

to
to
to
to
to
to
to

exe

red
green
yvellow
red
green
"v"e-. Tow
red

running.

timer.informIn(UMLRT Timespec(5,0));
leg.log("Switched to red");

arara

00 ®

Execution Semantics |

// machineisin stable state configuration
1. Message ml hasarrived andisdispatched

2. Ifdispatchingenables no transition, mlis
‘dropped’
3. Ifdispatchingenablestransitiont,
— Source state of t active,
— message matches trigger of t, and
— guard evaluates to ‘true’
4. thentransitiontexecuted
a. Execute exit action of source state of t (if any)
b. Execute action code of t (if any)
c. Execute entry code of target state of t (if any)
5. Iftargetoftis pseudo state,

continue by choosing and executing outgoing transition
(i.e., goto 5.)

// machinein stable state configuration

UML-RT

<" TrafficLight

StateMachine

Green

{

I Port

..m5b m4d m3 m2 ml

BESY 2

drop drop fire drop fire

10

Execution Application / | :

Semantics | R
(Cont,d) Target OS (Linux)

Target HW RT Controller w/ message queue MQ

Shared structures & services

Controller main loop

WHILE (1) {
m = dequeue (MQ) ;
IF can find transition t such that enabled(m,t) THEN
targetState = execChain(t);
mark targetState as active;
ELSE
report ‘Unexpected message m’;

}

WHERE

enabled(m, t) = source(t) is active, trigger (t) matches m, and eval (guard(t))=‘true’
execChain(t) = execute exit of source(t), if any;

execute effect of t, if any;
execute entry of target(t), if any;
WHILE target(t) is choice point ({
find t’ such that source(t’)=target (t) and eval (guard(t’))=‘true’;
execute effect of t’, if any;
execute entry of target(t’), 1if any;
t =1t’;
}
RETURN target(t);

UML-RT 11

$./TopMain.exe
Controller "DefaultCon

[]
. Pinger: ready
Exal I |p|e. Plng Pong Pinger: sending ping
Ponger: ready

I* outping) Ponger: received ping
in pong () Ponger: sending pong

== «Protocol» PingPongProtocol

x|

Pinger: received pong

Pinger: sending ping

=9 TO . -
P Ponger: received ping

Ponger: sending pong

. et 2T Pinger: received pong
pinger: Pinger ponger: Ponger

Pinger: sending ping
Ponger: received ping
pingPort: PingPongProtocol pongPort: PingPongProtocol Ponger: sending pong

Pinger: received pong
Pinger: sending ping

leg.log("Pinger: received pong"); : :

. . o leg.log("P : d ")
ogla(Pinger g |- b i
pingPort.ping().send(); | | 06 Port.oon dsend0~ ;

! | | pongFort.pongy. :
| T
1 e
,_J._‘ nag/... 1
poig) ping/--_|
s
Playing '; Playing
rT T N
Ui
L
N :- J N /
a !
log.log("Pinger: ready"); log.log("Ponger: ready”);

leg.log("Pinger: sending ping");
pingPort.ping().send(); 12

// cancel timer

// compute output

timer.cancelTimer(timerId);

p.response(output).send();

Example: Timers

logger.log("Processing request”);

~

ServerSM

c:Client s:Sernver
set timer to MAX
loop / [n<MAX]

Inttial

n seconds later

request(input:inputData)

|

_ response(output:OutputData

)

set timer

P

legger.logl"Too late!");

logger.log("setting timer");

timer.informIn(UMLRTTimespec(MAX, 0));

UML-RT

more than MAX seconds later

request(input:inputData)

c:Cli

ent

>

{ Error >

s:Server

13

Papyrus-RT

e Download

— https://www.eclipse.org/papyrus-
rt/content/download.php

— Java 8, 64 bits

e |nstallation, tutorials
— https://wiki.eclipse.org/Papyrus-RT/User
— 2 parts:

a) How to create models, generate code
b) How to build generated code (easiest under Linux)

e Q&A forums

— For Papyrus-RT: www.eclipse.org/forums/index.php/f/314/
— For assignment: CISC 836 pages on http://ong.queensu.ca/

UML-RT 14

Papyrus-RT (Cont’d)
* Use
— (model, generate, build, run)**

e Generated code

— <workspace>/<projectName> CDTProject/src

* Building generated code
— Papyrus-RT executable:

* C:\Users\Juergen Dingel\Programs\pRT1l Nov1l0 2017\Papyrus-
RT\papyrusrt.exe

— UMLRTS_ROOQOT (under Cygwin)

* /cygdrive/c/Users/Juergen Dingel/Programs/pRT1 Nov1l0 2017/
Papyrus-RT/plugins/org.eclipse.papyrusrt.rts 1.0.0.201707181457/umlrts

UML-RT 15

Papyrus-RT (Cont’d)

* Tips and tricks

— Common mistakes
* Forgot: ‘send’ statement, trigger

 When using ‘code snippet’:
— don’t confuse ‘effect” and ‘guard’ tab
— ensure changes saved properly

— Timing quite imprecise when using Cygwin under
Windows 7 and Vista

e Examples

UML-RT

16

