
EEE499	–Model-driven	
Development	of	Real-Time	Systems

UML-RT	and	Papyrus-RT:	
Basic	BehaviouralModeling

Acknowledgement

The	original	material	for	this	section	was	
developed	by	Prof.	JuergenDingel (Queen’s	

University)

State	Machines
States

– Capture	relevant	aspects	of	history	of		
object

– Determine	how	object	can	respond	to	
incoming	messages

– May	have	invariants associated	with	them
Pseudo	states

– Don’t	belong	 to	description	of	lifetime	of	
object
) object	cannot	be	‘in’	a	pseudo	state

– Helper	constructs	to	define	complex	state	
changes

Transitions
– Describe	how	object	can	move	from	one	

state	to	next	in	response	to	message	input

UML-RT	 3

States	I:	Simple	and	Pseudo• States
– Kinds:	

• Simple
• Later:	composite (in	hierarchical	state	
machines)

– May	contain
• Entry	action	(written	in	action	language)
• Exit	action	(written	in	action	language)

UML-RT	 4

§ Pseudo	states	I
• initial
• choice	point

choice point

initial
state

initial transition

Transitions
• Kinds:	

– Basic
– Later:	group (in	hierarchical	state	machines)

• Consists	of	
– Triggers

• Transitions	out	of	pseudo	states	(initial,	choice)	don’t	have	triggers
• Transitions	out	of	non-pseudo	state	should	have	at	least	one	trigger

– Guards (optional,	written	in	action	language)
• Transitions	out	of	initial	state	should	not	have	guards

– Effect/Actions (optional,	written	in	action	language)

UML-RT	 5

t[g]/a

Trigger
Specifies	port	and	

message

Guard
Boolean	condition	that	

must	hold	

Effect/Actions
Code	that	is	executed	when	

transition	is	taken

s1 s2

Transitions	Into	and	Out	of	Pseudo	States
• Initial

– Incoming	transition:	impossible
– Outgoing	transition:	no	guard,	no	trigger,	but	can	have	action	code

• Choice	point
– Incoming	transitions:	can	have	guard,	triggers,	action	code
– Outgoing	transitions:

• No	trigger,	but	should	have	guard
• Guards	should	be	
pairwise	disjoint	
(i.e.,	non-overlapping)

• Collection	of	guards	
should	be	exhaustive	

UML-RT	 6

Guards	on	Transitions	out	of	Basic	States

• Dangerous:	Easy	to	make	mistakes
– Hard	to	put	trigger	and	guard	info	in	name	of	transition
– Forget	that	guards	are	there,	what	exactly	they	are
– Have	non-exhaustive	or	overlapping	guards

• Better	to	use	choice	points

UML-RT	 7

return (hitCount>4);

return (hitCount<=3);

Action	Language
• Language	used	in	

– guards	to	express	Boolean	expressions
– entry	action,	exit	action,	transition	effects	to	read	and	update	
attribute	values,	send	messages

• Typically:	C/C++,	Java
State	machines	are	a	hybrid	notation	combining	

• graphical	notation	for	state	machines	and
• textual	notation	for	source	code	in	actions

UML	and	UML-RT	State	Machines
• different	from,	e.g.,	Finite	Automata
• closer	to	‘extended	hierarchical	communicating	state	machines’	[6]

UML-RT	 8

[6]	R.	Alur.	Formal	Analysis	 of	Hierarchical	State	Machines.	Verification:	Theory	and	Practice.	2003.

Example:	Action	Code,	Timers,	Logging

UML-RT	 9

Execution	Semantics	I		
//	machine	is	in	stable	state	configuration
1. Message	m1	has	arrived	and	is	dispatched
2. If	dispatching	enables	no	transition,	m1	is	

‘dropped’
3. If	dispatching	enables transition	t,		

– Source	state	of	t	active,	
– message	matches	trigger	of	t,	and
– guard	evaluates	to	‘true’

4. then	transition	t	executed
a. Execute	exit	action	of	source	state	of	t	(if	any)
b. Execute	action	code	of	t	(if	any)
c. Execute	entry	code	of	target	state	of	t	(if	any)

5. If	target	of	t	is	pseudo	state,
continue	by	choosing	and	executing	outgoing	 transition	
(i.e.,	goto 5.)

//	machine	in	stable	state	configuration

UML-RT 10

…	m5		m4		m3		m2		m1

drop drop dropfire fire

…

Execution
Semantics	I
(Cont’d)

UML-RT	 11

WHILE (1) {
m = dequeue(MQ);
IF can find transition t such that enabled(m,t) THEN

targetState = execChain(t);
mark targetState as active;

ELSE
report ‘Unexpected message m’;

}
WHERE
enabled(m,t) = source(t) is active, trigger(t) matches m, and eval(guard(t))=‘true’
execChain(t) = execute exit of source(t), if any;

execute effect of t, if any;
execute entry of target(t), if any;

WHILE target(t) is choice point {
find t’ such that source(t’)=target(t) and eval(guard(t’))=‘true’;

execute effect of t’, if any;
execute entry of target(t’), if any;

t = t’;
}
RETURN target(t);

Application

RTS	

Target	OS	(Linux)

Target	HW

Controller	main	loop Shared	structures	&	services

RT	Controller	w/	message	queue	MQ

Example:	Ping	Pong

UML-RT	 12

Example:	Timers

UML-RT	 13

Papyrus-RT
• Download

– https://www.eclipse.org/papyrus-
rt/content/download.php

– Java	8,	64	bits
• Installation,	tutorials

– https://wiki.eclipse.org/Papyrus-RT/User
– 2	parts:	

a)	How	to	create	models,	generate	code
b)	How	to	build	generated	code	(easiest	under	Linux)

• Q&A	forums
– For	Papyrus-RT:	www.eclipse.org/forums/index.php/f/314/
– For	assignment:	CISC	836	pages	on	http://onq.queensu.ca/

UML-RT	 14

Papyrus-RT	(Cont’d)
• Use

– (model,	generate,	build,	run)^*

• Generated	code	
– <workspace>/<projectName>_CDTProject/src

• Building	generated	code	
– Papyrus-RT	executable:

• C:\Users\Juergen Dingel\Programs\pRT1_Nov10_2017\Papyrus-
RT\papyrusrt.exe

– UMLRTS_ROOT	(under	Cygwin)
• /cygdrive/c/Users/Juergen Dingel/Programs/pRT1_Nov10_2017/

Papyrus-RT/plugins/org.eclipse.papyrusrt.rts_1.0.0.201707181457/umlrts

UML-RT	 15

Papyrus-RT	(Cont’d)

• Tips	and	tricks
– Common	mistakes

• Forgot:	‘send’	statement,	trigger
• When	using	‘code	snippet’:	

– don’t	confuse	‘effect’	and	‘guard’	tab
– ensure	changes	saved	properly

– Timing	quite	imprecise	when	using	Cygwin	under	
Windows	7	and	Vista

• Examples

UML-RT	 16

