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UML-RT/Papyrus-RT: Part ||

 Moreon

— State machines
* States
— Simple
— Composite
* Pseudo states
— Initial
— Choice point
— Entry point
— Exit point
— History
— Junction

— Execution semantics
* Run-to-completion

* Design guidelines
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— Kinds:

— May contain

= Pseudo states
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Example:

Group Transitions

Source stateiscomposite

— Start configuration <‘play’/player2Move’>

— Execute transition ‘reset’:
* exit code ‘player2Move’, exit code ‘play’, effect ‘reset’, entry code ‘idle’

— End configuration <‘idle’>
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State Configuration

e States can be active: flow of control resides at state
* |If a substate is active, its containing superstate is, too
State configuration: list of active states

Stable state configuration: no pseudo states and ends in basic state
Example: <‘play’, ‘player1Move’, ‘waitForHand’>
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Entry and Exit Points

* Required boundary pseudo states for transitions
crossing boundaries of composite states

* Transition ending at entry point w/o outgoing
transitions: implicit return to history
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Run-to-Completion

* The event processing of state machines follows ‘run-to-
completion’ semantics

* Dispatching of message triggers execution of possibly entire
chain of transitions (‘exec’ on previous slide)

* Execution lasts until stable state configuration has been
reached (last state in transition chain not a pseudo state)

e During transition execution, no other message will be
dispatched

) execution triggered by message treated as one unit
) no ‘interleaved’ processing of messages

)
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EXecution semantics

Controller main loop

WHILE (1) {
m = dequeue (MQ) ;

IF can find transition t such that enabled(ssc,m,t) THEN ssc = exec(ssc,t);
ELSE report ‘Unexpected message m’;
}
WHERE
enabled(ssc,m,t) = (1) source(t) is active, (2) trigger(t) matches m,
(3) eval(guard(t))=‘true’, and
(4) source(t) does not contain any other state satisfying (1), (2), (3)
exec(ssc,t) = LET ssc=<Sjy, .., Si-1s Sis Sisis -.r Sp> where s;=source (t) IN

FOR j=n to i+1 {execute exit of sy}
targetOfChain = execChain(t);
Sy = leastCommonAncestor (source(t), targetOfChain);
LET <sy, s’i, .., S’'> be containment hierarchy where s’ ,=targetOfChain IN
RETURN <si, .., Sx-1ir Skxs S'1, .., s'>
execChain(t) = execute exit of source(t), if any;
execute effect of t, if any;
execute entry of target(t), if any;
WHILE target(t) is pseudo state {
find t’ such that source(t’)=target (t) and eval (guard(t’))=‘true’;
execute exit of state(source(t’)), if any;
execute effect of t’, if any;
execute entry of state (target(t’)), if any;
t =t’;
}
RETURN target(t);

UML2.5 Spec, Section 14.2.3
http://www.omg.org/spec/UML/2.5/PDF
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History

Re-establish full state configurationthat was active when containing state
was active most recently

If entering state for first time, go toinitial state

Example:from to with
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History (Cont’d)

* History pseudo state does not need to be given explicitly

* Transition ends at boundary of composite state: Implicit
return to history
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Junction Points

Can be used to split and
merge control flow
Warning:

— Static evaluation: All guardson
transitions connected by junction

ping

F StateMachine
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Junction Points (Cont’d)

 Merge useful to avoid duplication of action
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Transition Kinds

3 kinds:external, local, internal (relative to source state)

* External:sourcestate (and all substates) exited and target state entered
* External selftransition: external and source=target

* Local:sourcestate contains transition, is not exited and source !=target
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Transition Kinds (Cont’d)

* |Internal:

— Local transition with source==target

— Source state (and all substates) remain active; no exit or entry actions

executed
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UML-RT: Design Guidelines

e General

Descriptive names
Readable, clear layout of models
Remove/cancel what is not needed anymore (timers, capsule parts)

Avoid duplication (through, e.g., operations, junction points for merging,
entry and exit code)

 Capsules
— Low coupling, high cohesion (look at connectors, message traffic, protocols)

— Avoid overly deeply nested capsule definitions

e State machines
— Avoid unreachable states and transitions

— Avoid overly deeply nested composite states
— Avoid composite states with only one substate

UML-RT
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UML-RT: Design Guidelines (Cont’d)

e Actioncode

Short, simple, terminating, readable, avoid ‘hidden’ states (e.g., flags and
complex control flow)

* Junction points

Only use for merging

* Transitions

UML-RT

Guards: short, simple, readable, side-effect-free

Out of choice points: guards exhaustive and exclusive

Out of initial, entry, exit, junction: no guard

Out of non-pseudo state: no guards

Use different kinds (external, local, internal) appropriately

Avoid dropped, ‘unexpected’ messages

Make copy of complex message parameters upon receipt

Can’t cross ‘state boundaries’ w/o going through an entry or exit point
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UML-RT: Design Guidelines (Cont’d)

e Observability

— Insert informative log statements at suitable places to facilitate reasoning
about the model (debugging, error localization)

Format:
Logger.log (“ [Name of capsule part] (Name of state)..(Name of substate) info”)

where ‘info’ describes
* message and/or data received, or
* attribute values

— Consider use of command-line parameters to facilitate testing
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