
EEE499	–Model-driven	
Development	of	Real-Time	Systems

UML-RT	and	Papyrus-RT:	
Advance	BehaviouralModeling

Acknowledgement

The	original	material	for	this	section	was	
developed	by	Prof.	JuergenDingel (Queen’s	

University)

UML-RT/Papyrus-RT:	Part	III
• More	on	

– State	machines
• States

– Simple
– Composite		

• Pseudo	states	
– Initial
– Choice	point
– Entry	point
– Exit	point
– History
– Junction

– Execution	semantics
• Run-to-completion

• Design	guidelines	

UML-RT	 3

States	II:	Composite	and	Pseudo	
• States

– Kinds:	
• Simple
• Composite (in	hierarchical	state	machines)

– May	contain
• Entry	action		
• Exit	action		

UML-RT	 4

§ Pseudo	states
• initial
• choice	point
• history
• entry	point		
• exit	point		
• junction	point exit

point

history

entry
point

in composite
states only

Group	Transitions
• Source	state	is	composite
• Example:	

– Start	configuration	<‘play’,’player2Move’>
– Execute	transition	‘reset’:	

• exit code	‘player2Move’,	exit	code	‘play’,	effect	‘reset’,	entry	code	‘idle’
– End	configuration	<‘idle’>

UML-RT CISC 836, Winter 2018 5

State	Configuration
• States	can	be	active:	flow	of	control	resides	at	state
• If	a	substate is	active,	its	containing	superstate is,	too
• State	configuration:	list	of	active	states
• Stable	state	configuration:	no	pseudo	states	and	ends	in	basic	state
• Example:	<‘play’,	‘player1Move’,	‘waitForHand’>

UML-RT	 6

Entry	and	Exit	Points
• Required	boundary	pseudo	states	for	transitions	
crossing	boundaries	of	composite	states

• Transition	ending	at	entry	point	w/o	outgoing	
transitions:	implicit	return	to	history

UML-RT	 7

Run-to-Completion
• The	event	processing	of	state	machines	follows	‘run-to-

completion’	semantics
• Dispatching	of	message	triggers	execution	of	possibly	entire	

chain	of	transitions	(‘exec’	on	previous	slide)
• Execution	lasts	until	stable	state	configuration	has	been	

reached	(last	state	in	transition	chain	not	a	pseudo	state)
• During	transition	execution,	no	other	message	will	be	

dispatched

) execution	triggered	by	message	treated	as	one	unit
) no	‘interleaved’	processing	of	messages
) less	potential	for	bugs

UML-RT	 8

Execution	Semantics	
II

UML-RT	 9

WHILE (1) {
m = dequeue(MQ);
IF can find transition t such that enabled(ssc,m,t) THEN ssc = exec(ssc,t);
ELSE report ‘Unexpected message m’;

}
WHERE
enabled(ssc,m,t) = (1) source(t) is active, (2) trigger(t) matches m,

(3) eval(guard(t))=‘true’, and
(4) source(t) does not contain any other state satisfying (1),(2),(3)

exec(ssc,t) = LET ssc=<s1, …, si-1, si, si+1, …, sn> where si=source(t) IN
FOR j=n to i+1 {execute exit of sj}
targetOfChain = execChain(t);
sk = leastCommonAncestor(source(t), targetOfChain);
LET <sk, s’1, …, s’m> be containment hierarchy where s’m=targetOfChain IN

RETURN <s1, …, sk-1, sk, s’1, …, s’m>
execChain(t) = execute exit of source(t), if any;

execute effect of t, if any;
execute entry of target(t), if any;

WHILE target(t) is pseudo state {
find t’ such that source(t’)=target(t) and eval(guard(t’))=‘true’;
execute exit of state(source(t’)), if any;

execute effect of t’, if any;
execute entry of state(target(t’)), if any;

t = t’;
}
RETURN target(t);

Controller	main	loop

UML2.5	Spec,	Section	14.2.3
http://www.omg.org/spec/UML/2.5/PDF

History
• Re-establish	full	state	configuration	that	was	active	when	containing	state	

was	active	most	recently	
• If	entering	state	for	first	time,	go	to	initial	state
• Example:	from	<‘play’,	s>	to	<‘play’,	s>	with	‘reset’	‘resume1’	

UML-RT	 10

History	(Cont’d)
• History	pseudo	state	does	not	need	to	be	given	explicitly
• Transition	ends	at	boundary	of	composite	state:	Implicit	
return	to	history

UML-RT	 11

Junction	Points
• Can	be	used	to	split and	

merge control	flow
• Warning:

– Static	evaluation:	All		guards	on	
transitions	connected	by	junction	
points	evaluated	BEFORE	first	
transition	is	taken

– Transitions	taken	only	when	fully	
enabled	path	exists

• Choice	points	
– Dynamic	evaluation:	
Guards	evaluated	as	
transitions	are	executed

• Pros/cons?

UML-RT	 12

Junction	Points	(Cont’d)

• Merge	useful	to	avoid	duplication	of	action	
code

UML-RT	 13

Transition	Kinds
• 3	kinds:	external,	local,	internal	(relative	to	source	state)
• External:	source	state	(and	all	substates)	exited	and	target	state	entered
• External	self	transition:	external	and	source=target
• Local:	source	state	contains	transition,	is	not	exited	and	source	!=	target

UML-RT	 14
local

Transition	Kinds	(Cont’d)
• Internal:	

– Local	transition	with	source==target
– Source	state	(and	all	substates)	remain	active;	no	exit	or	entry	actions	

executed

UML-RT	 15

UML-RT:	Design	Guidelines
• General

– Descriptive	names
– Readable,	clear	layout	of	models
– Remove/cancel	what	is	not	needed	anymore	(timers,	capsule	parts)	
– Avoid	duplication	(through,	 e.g.,	operations,	junction	points	for	merging,	

entry	and	exit	code)
• Capsules

– Low	coupling,	high	cohesion	(look	at	connectors,	message	traffic,	protocols)
– Avoid	overly	deeply	nested	capsule	definitions

• State	machines
– Avoid	unreachable	states	and	transitions
– Avoid	overly	deeply	nested	composite	states
– Avoid	composite	states	with	only	one	substate

UML-RT	 16

UML-RT:	Design	Guidelines	(Cont’d)
• Action	code

– Short,	simple,	terminating,	 readable,	avoid	‘hidden’	 states	(e.g.,	flags	and	
complex	control	flow)

• Junction	points
– Only	use	for	merging

• Transitions
– Guards:	short,	simple,	readable,	side-effect-free
– Out	of	choice	points:	guards	exhaustive	and	exclusive
– Out	of	initial,	entry,	exit,	junction:	no	guard
– Out	of	non-pseudo	state:	no	guards
– Use	different	kinds	(external,	local,	internal)	appropriately
– Avoid	dropped,	 ‘unexpected’	messages
– Make	copy	of	complex	message	parameters	upon	receipt
– Can’t	cross	‘state	boundaries’	w/o	going	through	an	entry	or	exit	point

UML-RT	 17

UML-RT:	Design	Guidelines	(Cont’d)
• Observability

– Insert	informative	log	statements	at	suitable	places	to	facilitate	reasoning	
about	the	model	(debugging,	 error	localization)
Format:	
Logger.log(“[Name of capsule part](Name of state)…(Name of substate) info”)

where	‘info’	describes
• message	and/or	data	received,	or
• attribute	values

– Consider	use	of	command-line	parameters	to	facilitate	testing

UML-RT	 18

