EEE499 — Model-driven
Development of Real-Time Systems

UML-RT and Papyrus-RT:
Advance Behavioural Modeling

4 ;
FLECTRICAL & COMPUTER GENIE ELECTRIQUE
EERIN T EAIE INFORMATIE RMC £ CMR

Acknowledgement

The original material for this section was
developed by Prof. Juergen Dingel (Queen’s
University)

UML-RT/Papyrus-RT: Part ||

 Moreon

— State machines
* States
— Simple
— Composite
* Pseudo states
— Initial
— Choice point
— Entry point
— Exit point
— History
— Junction

— Execution semantics
* Run-to-completion

* Design guidelines

UML-RT

— Kinds:

— May contain

= Pseudo states

UML-RT

States Il: Composite and Pseudo

e States

* Simple

* Entry action

* Bxitaction T =
_____ /entry OpaqueBehavior setUp

initial

choice point
history

entry point
exit point
junction poin

~~
-~
-~
~
-~
~
-~
~
~~
~

-~
-~
~

=8

-~
-~ o
~

~~~~~~~~~~ State3
"7 | /exit OpaqueBehavior tearDown

Stated

. . Compute
in composite
states only \ Doner
' | exit
e
[i»>=MAX] [else]
entry point
_ c%@)
point | . |
history
4



Example:

Group Transitions

Source stateiscomposite

— Start configuration <‘play’/player2Move’>

— Execute transition ‘reset’:
* exit code ‘player2Move’, exit code ‘play’, effect ‘reset’, entry code ‘idle’

— End configuration <‘idle’>

CardGameSM

reset

\
[
play
start2 t
O @ >L| playerlMove \
i\
noWinner t2
’/—-- ---------- \\
1 1
1 1
A N\ X ( player2Move ] |
= \/\ 7 i
1 1
donel hasWinner? B .. 4
C N




State Configuration

e States can be active: flow of control resides at state
* |If a substate is active, its containing superstate is, too
State configuration: list of active states

Stable state configuration: no pseudo states and ends in basic state
Example: <‘play’, ‘player1Move’, ‘waitForHand’>

CardGameSM W. (" playerlMove )
( play
Initial
start2 = S
=7 Q- /Ldeilj :/]\ ayerlMove
// 17 T -'
'}eset N
noWinner 2
e </b ( player2Move ]
—= - L
donel hasWinner? B




Entry and Exit Points

* Required boundary pseudo states for transitions
crossing boundaries of composite states

* Transition ending at entry point w/o outgoing
transitions: implicit return to history

SafeSM

closeSafe

initial

0"33 = reset2

Closed

resetl
openSafe

UML-RT

toGotlDigit - toGot2Digits
GotlDigit] ﬁ/

L
notStarl notStar2
/

ne



Run-to-Completion

* The event processing of state machines follows ‘run-to-
completion’ semantics

* Dispatching of message triggers execution of possibly entire
chain of transitions (‘exec’ on previous slide)

* Execution lasts until stable state configuration has been
reached (last state in transition chain not a pseudo state)

e During transition execution, no other message will be
dispatched

) execution triggered by message treated as one unit
) no ‘interleaved’ processing of messages

)

UML-RT 8



EXecution semantics

Controller main loop

WHILE (1) {
m = dequeue (MQ) ;

IF can find transition t such that enabled(ssc,m,t) THEN ssc = exec(ssc,t);
ELSE report ‘Unexpected message m’;
}
WHERE
enabled(ssc,m,t) = (1) source(t) is active, (2) trigger(t) matches m,
(3) eval(guard(t))=‘true’, and
(4) source(t) does not contain any other state satisfying (1), (2), (3)
exec(ssc,t) = LET ssc=<Sjy, .., Si-1s Sis Sisis -.r Sp> where s;=source (t) IN

FOR j=n to i+1 {execute exit of sy}
targetOfChain = execChain(t);
Sy = leastCommonAncestor (source(t), targetOfChain);
LET <sy, s’i, .., S’'> be containment hierarchy where s’ ,=targetOfChain IN
RETURN <si, .., Sx-1ir Skxs S'1, .., s'>
execChain(t) = execute exit of source(t), if any;
execute effect of t, if any;
execute entry of target(t), if any;
WHILE target(t) is pseudo state {
find t’ such that source(t’)=target (t) and eval (guard(t’))=‘true’;
execute exit of state(source(t’)), if any;
execute effect of t’, if any;
execute entry of state (target(t’)), if any;
t =t’;
}
RETURN target(t);

UML2.5 Spec, Section 14.2.3
http://www.omg.org/spec/UML/2.5/PDF

UML-RT 9




History

Re-establish full state configurationthat was active when containing state
was active most recently

If entering state for first time, go toinitial state

Example:from to with
CardGameSM h s play ~
— e_z >
| resumel |
Initial Cﬁ@
start2 t
O @ >{ pIayerlMoveJ
""" | )
reset |
noWinner -
! 6¢< < >é ‘ player2Move ]
N 4 LI hasWinner? B
)\ J

UML-RT 10




History (Cont’d)

* History pseudo state does not need to be given explicitly

* Transition ends at boundary of composite state: Implicit
return to history

F StateMachine )

Active

% sendincl sendDoub

WaitingForDoub

UML-RT .




Junction Points

Can be used to split and
merge control flow
Warning:

— Static evaluation: All guardson
transitions connected by junction

ping

F StateMachine
[hitCount even]

State2

points evaluated BEFORE first
transition is taken N

— Transitions taken only when fully
enabled path exists

Choice points
— Dynamic evaluation:
Guards evaluated as
transitions are executed

Pros/cons? @ Statel b

t2[y<5]/x==:
P y @ State2

tx==11y==;
@States o @

UML-RT

v

t2[y<5)/x=+;
o » @D Stated

False

A )
G Default




Junction Points (Cont’d)

 Merge useful to avoid duplication of action

( Open

~

gotSta

gotDigitl gotDigit2

gotDigi
GotSta 4 GotlDigit c Got2Digit pa Got3Digit

notStarl

notStar3 < > M H
notStard

codeComplete
gotDigit ?

/

UML-RT

13



Transition Kinds

3 kinds:external, local, internal (relative to source state)

* External:sourcestate (and all substates) exited and target state entered
* External selftransition: external and source=target

* Local:sourcestate contains transition, is not exited and source !=target

@ getScore

~
é CardGameSM ) ( play
resume?
( E
Initial
start2 £
resummel Q ! \/@ >kpla)’er1Move \
reset : /\
I
! noWinner t2
I
1
1
6Q< ! < >é l playerZMove]
_____ !
d?nd hasWinner? B
o : y, |
. : J/
1

- Name TetSToTe
e e local »
L UML Kind external



Transition Kinds (Cont’d)

* |Internal:

— Local transition with source==target

— Source state (and all substates) remain active; no exit or entry actions

executed

CardGameSM

Initial

resumel

.

reset

© getScore
UML Name
Comments Kind

UML-RT

internal

-

play

resume2 E|
C

start2 t
@ >L|deal I >L|player1Move I

N
noWinner t2
A= <>< [ player2Move ]
donel hasWinner?

o




UML-RT: Design Guidelines

e General

Descriptive names
Readable, clear layout of models
Remove/cancel what is not needed anymore (timers, capsule parts)

Avoid duplication (through, e.g., operations, junction points for merging,
entry and exit code)

 Capsules
— Low coupling, high cohesion (look at connectors, message traffic, protocols)

— Avoid overly deeply nested capsule definitions

e State machines
— Avoid unreachable states and transitions

— Avoid overly deeply nested composite states
— Avoid composite states with only one substate

UML-RT

16



UML-RT: Design Guidelines (Cont’d)

e Actioncode

Short, simple, terminating, readable, avoid ‘hidden’ states (e.g., flags and
complex control flow)

* Junction points

Only use for merging

* Transitions

UML-RT

Guards: short, simple, readable, side-effect-free

Out of choice points: guards exhaustive and exclusive

Out of initial, entry, exit, junction: no guard

Out of non-pseudo state: no guards

Use different kinds (external, local, internal) appropriately

Avoid dropped, ‘unexpected’ messages

Make copy of complex message parameters upon receipt

Can’t cross ‘state boundaries’ w/o going through an entry or exit point

17



UML-RT: Design Guidelines (Cont’d)

e Observability

— Insert informative log statements at suitable places to facilitate reasoning
about the model (debugging, error localization)

Format:
Logger.log (“ [Name of capsule part] (Name of state)..(Name of substate) info”)

where ‘info’ describes
* message and/or data received, or
* attribute values

— Consider use of command-line parameters to facilitate testing

UML-RT 18



