
Task Concept and Heap Management in FreeRTOS

Mojtaba Bagherzadeh, Adrien Lapointe

Royal Military College (RMC)

mojtaba@cs.queensu.ca,adrien.lapointe@rmc.ca

February 11, 2018

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 1 / 21

Overview

1 Tasks in FreeRTOS

2 FreeRTOS Applications Basics

3 Heap Management in FreeRTOS

4 Heap Utility Functions

5 References

6 Q & A

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 2 / 21

Task Concept

A FreeRTOS application is designed as a set of tasks. A task definition
consists of

Name

Priority

Implementation which is defined as a C function, and must not return
any value and terminate. It must have a void * argument (task
function).

void ATaskFuntion (void * vpArg)

In general a task status can be in running or Not Running state. In a single
core system, only one task can be in running state.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 3 / 21

Task Concept

A FreeRTOS application is designed as a set of tasks. A task definition
consists of

Name

Priority

Implementation which is defined as a C function, and must not return
any value and terminate. It must have a void * argument (task
function).

void ATaskFuntion (void * vpArg)

In general a task status can be in running or Not Running state. In a single
core system, only one task can be in running state.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 3 / 21

Task Concept

A FreeRTOS application is designed as a set of tasks. A task definition
consists of

Name

Priority

Implementation which is defined as a C function, and must not return
any value and terminate. It must have a void * argument (task
function).

void ATaskFuntion (void * vpArg)

In general a task status can be in running or Not Running state. In a single
core system, only one task can be in running state.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 3 / 21

Task Concept

A FreeRTOS application is designed as a set of tasks. A task definition
consists of

Name

Priority

Implementation which is defined as a C function, and must not return
any value and terminate. It must have a void * argument (task
function).

void ATaskFuntion (void * vpArg)

In general a task status can be in running or Not Running state. In a single
core system, only one task can be in running state.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 3 / 21

A Typical Task Function

void ATaskFunction(void *pvParameters){

/* Variables can be declared just as per a normal

function. */

int32_t lVariableExample = 0;

/* A task will normally be implemented as an

infinite loop. */

for(;;){

/* The code to implement the task

functionality will go here. */

}

/* Should the task implementation ever break out of

the above loop , then the task must be deleted

before reaching the end of its implementing

function. The NULL parameter passed to the

vTaskDelete () API function indicates that the

task to be deleted is the calling (this) task.

*/

vTaskDelete(NULL);

}

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 4 / 21

Creating Tasks

BaseType_t xTaskCreate(TaskFunction_t pvTaskCode ,

const char * const pcName ,

uint16_t usStackDepth ,void *pvParameters ,

UBaseType_t uxPriority ,TaskHandle_t *pxCreatedTask)

Argument Description

pvTaskCode name of the task function

pcName task name

usStackDepth size of stack for the task

pvParameters a value which is passed into the task function.

uxPriority priority of the task that can be assigned from 0 (the lowest
priority) to configMAX_PRIORITIES - 1.

pxCreatedTask Can be used to pass out a handle to the task being created.

Return values of the function:

pdPASS: the task has been created successfully.

pdFAIL: the task has not been created .

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 5 / 21

Creating Tasks

BaseType_t xTaskCreate(TaskFunction_t pvTaskCode ,

const char * const pcName ,

uint16_t usStackDepth ,void *pvParameters ,

UBaseType_t uxPriority ,TaskHandle_t *pxCreatedTask)

Argument Description

pvTaskCode name of the task function

pcName task name

usStackDepth size of stack for the task

pvParameters a value which is passed into the task function.

uxPriority priority of the task that can be assigned from 0 (the lowest
priority) to configMAX_PRIORITIES - 1.

pxCreatedTask Can be used to pass out a handle to the task being created.

Return values of the function:

pdPASS: the task has been created successfully.

pdFAIL: the task has not been created .

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 5 / 21

Creating Tasks

BaseType_t xTaskCreate(TaskFunction_t pvTaskCode ,

const char * const pcName ,

uint16_t usStackDepth ,void *pvParameters ,

UBaseType_t uxPriority ,TaskHandle_t *pxCreatedTask)

Argument Description

pvTaskCode name of the task function

pcName task name

usStackDepth size of stack for the task

pvParameters a value which is passed into the task function.

uxPriority priority of the task that can be assigned from 0 (the lowest
priority) to configMAX_PRIORITIES - 1.

pxCreatedTask Can be used to pass out a handle to the task being created.

Return values of the function:

pdPASS: the task has been created successfully.

pdFAIL: the task has not been created .

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 5 / 21

A Typical FreeRTOS Application

int main(void)

{

// Create tasks. In real scenario you should check the

return value of the task creation function to make sure

that task are created successfully

xTaskCreate (....);

xTaskCreate (....);

// Start the scheduler so the tasks start executing.

vTaskStartScheduler ();

// In normal situation , the execution should never reach

here.

for(;;);

}

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 6 / 21

FreeRTOSConfig.h

FreeRTOSConfig.h is used to tailor FreeRTOS for use in a specific
application. For example,

configUSE_PREEMPTION defines whether the co-operative or pre-emptive
scheduling algorithm will be used.

configTOTAL_HEAP_SIZE defines the total heap size of the application.

configMAX_PRIORITIES defines the maximum allowable priority for a
task.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 7 / 21

Memory allocation for a FreeRTOS application

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 8 / 21

Data Types

All C basic data types can be used in FreeRTOS application. In addition,
two data types are specific to FreeRTOS.
Type Name Description

TickType_t a data type used to hold the tick count value, and to
specify times. It can be either an unsigned 16-bit type
or an unsigned 32-bit type, depending on the setting of
configUSE_16_BIT_TICKS,

BaseType_t the most efficient data type for the architecture. Typically,
this is a 32-bit type on a 32-bit architecture, a 16-bit type on
a 16-bit architecture, and so on.

FreeRTOS source code explicitly qualifies every use of char with either
signed or unsigned, unless the char is used to hold an ASCII character, or a
pointer to char is used to point to a string.
Plain int types are never used.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 9 / 21

Naming Rules

Variables: Variable names are prefixed with their type: v for void, c

for char, s for short, l for long, and x for portBASE_TYPE and any other
types (structures, task handles, queue handles, etc.).
unsigned variables and pointers are also prefixed with a u and p

respectively. Therefore, variable of type unsigned char will be prefixed
with uc, and a variable of type pointer to char will be prefixed with pc.

Functions: Functions are prefixed with both the type they return and
the file they are defined in. For example: vTaskPrioritySet() returns a
void and is defined within task.c. xQueueReceive() returns a variable
of type portBASE_TYPE and is defined within queue.c.

Macro: Macro Names are written in upper case and prefixed with
lower case letters that indicate where the macro is defined.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 10 / 21

Recall

Stack

The stack is the memory space for a thread (a task in FreeRTOS) of
execution. The stack is always reserved in a LIFO (last in first out) order,
i.e., the most recently reserved block is always the next block to be freed.

Heap

The heap is a memory block for dynamic allocation. A block can be
allocated and freed at any time. This makes it much more complex to
keep track of which parts of the heap are allocated or free at any given
time; there are many custom heap allocation mechanism for different
usage patterns.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 11 / 21

Recall

Stack

The stack is the memory space for a thread (a task in FreeRTOS) of
execution. The stack is always reserved in a LIFO (last in first out) order,
i.e., the most recently reserved block is always the next block to be freed.

Heap

The heap is a memory block for dynamic allocation. A block can be
allocated and freed at any time. This makes it much more complex to
keep track of which parts of the heap are allocated or free at any given
time; there are many custom heap allocation mechanism for different
usage patterns.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 11 / 21

Dynamic Memory Allocation in FreeRTOS

Mechanism

FreeRTOS does not use mallaoc and free for dynamic memory allocation.
This is due to the real-time applications requirement such as determinism.
Instead it relies on pvPortMalloc() and vPortFree() which are provided by
the portable layer.

Default Support

FreeRTOS supports five mode of implementation for pvPortMalloc() and
vPortFree() which are called heap_1 to heap_5.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 12 / 21

Heap 1

Mechanism

Memory only gets allocated before the scheduler has been started. It
subdivides a heap into smaller blocks, as calls to pvPortMalloc() are made.
The heap size is specified TOTAL_HEAP_SIZE.

Application Area

Safety critical systems

Applications that never delete a task

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 13 / 21

Heap 1

Mechanism

Memory only gets allocated before the scheduler has been started. It
subdivides a heap into smaller blocks, as calls to pvPortMalloc() are made.
The heap size is specified TOTAL_HEAP_SIZE.

Application Area

Safety critical systems

Applications that never delete a task

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 13 / 21

Heap 2

Mechanism

It uses a best fit algorithm to allocate memory and, unlike heap_1, it does
allow memory to be freed. The best fit algorithm ensures that
pvPortMalloc() uses the free block of memory that is closest in size to the
number of bytes requested.

Application Area

Applications that create and delete tasks repeatedly.

Note

Use heap_4 instead of heap_2.

similar to heap_1 the heap is allocated statically when applications
start based on TOTAL_HEAP_SIZE.

Heap_2 is not deterministic.

It can cause the fragmentation.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 14 / 21

Heap 2

Mechanism

It uses a best fit algorithm to allocate memory and, unlike heap_1, it does
allow memory to be freed. The best fit algorithm ensures that
pvPortMalloc() uses the free block of memory that is closest in size to the
number of bytes requested.

Application Area

Applications that create and delete tasks repeatedly.

Note

Use heap_4 instead of heap_2.

similar to heap_1 the heap is allocated statically when applications
start based on TOTAL_HEAP_SIZE.

Heap_2 is not deterministic.

It can cause the fragmentation.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 14 / 21

Heap 3

Mechanism

Heap_3 uses the malloc() and free() functions, so the size of the heap is
defined by the linker configuration, and the TOTAL_HEAP_SIZE setting has no
affect.

Application Area

Is not recommended for safety critical systems.

Is not recommended for system with limited resources.

Note

Requires the linker to setup a heap, and the compiler library to
provide malloc() and free() implementations.

Is not deterministic.

Considerably increase the RTOS kernel code size.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 15 / 21

Heap 3

Mechanism

Heap_3 uses the malloc() and free() functions, so the size of the heap is
defined by the linker configuration, and the TOTAL_HEAP_SIZE setting has no
affect.

Application Area

Is not recommended for safety critical systems.

Is not recommended for system with limited resources.

Note

Requires the linker to setup a heap, and the compiler library to
provide malloc() and free() implementations.

Is not deterministic.

Considerably increase the RTOS kernel code size.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 15 / 21

Heap 3

Mechanism

Heap_3 uses the malloc() and free() functions, so the size of the heap is
defined by the linker configuration, and the TOTAL_HEAP_SIZE setting has no
affect.

Application Area

Is not recommended for safety critical systems.

Is not recommended for system with limited resources.

Note

Requires the linker to setup a heap, and the compiler library to
provide malloc() and free() implementations.

Is not deterministic.

Considerably increase the RTOS kernel code size.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 15 / 21

Heap 4

Mechanism

Heap_4 uses a first fit algorithm to allocate memory. Unlike heap_2, heap_4

combines adjacent free blocks of memory into a single larger block, which
minimizes the risk of memory fragmentation

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 16 / 21

Heap 5

Mechanism

The algorithm used by heap_5 to allocate and free memory is identical to
that used by heap_4. Unlike heap_4, heap_5 is not limited to allocating
memory from a single statically declared array; it can allocate memory
from multiple and separated memory spaces.

Application Area

When RAM provided by the system on which FreeRTOS is running
does not appear as a single contiguous.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 17 / 21

Heap 5

Mechanism

The algorithm used by heap_5 to allocate and free memory is identical to
that used by heap_4. Unlike heap_4, heap_5 is not limited to allocating
memory from a single statically declared array; it can allocate memory
from multiple and separated memory spaces.

Application Area

When RAM provided by the system on which FreeRTOS is running
does not appear as a single contiguous.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 17 / 21

Monitor Heap Free Size

size_t xPortGetFreeHeapSize(void)

Returns the number of free bytes (unallocated) in the heap at the time
xPortGetFreeHeapSize() is called.

size_t xPortGetMinimumEverFreeHeapSize(void)

Returns the minimum number of free bytes that have ever existed in the
heap since the FreeRTOS application started executing (worst case
analysis). It is only supported with heap_4 or heap_5 is used.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 18 / 21

Handle Heap Failure

If the heap can not be allocated (often because of the size limit), we can
have a failed hook function to handle the failure.

set configUSE_MALLOC_FAILED_HOOK to 1 in FreeRTOSConfig.h.

Implement a failure handling function with the following signature:
void vApplicationMallocFailedHook(void)

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 19 / 21

References

Richard Barry. Mastering the FreeRTOS Real Time Kernel.
FreeRTOS.org, 2016

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 20 / 21

Question?

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 11, 2018 21 / 21

	Tasks in FreeRTOS
	FreeRTOS Applications Basics
	Heap Management in FreeRTOS
	Heap Utility Functions
	References
	Q & A

