
Task Management in FreeRTOS

Mojtaba Bagherzadeh, Adrien Lapointe

Royal Military College (RMC)

mojtaba@cs.queensu.ca,adrien.lapointe@rmc.ca

February 16, 2018

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 1 / 19

Overview

1 Recall

2 Task Configuration

3 Periodic Task

4 Q & A

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 2 / 19

Recall

Task
A task is implemented as a C function and must return void and take a
void pointer parameter. It has an entry point, will normally run forever
within an infinite loop, and will not exit.

Task Instance
A single task function definition can be used to create any number of tasks.
Each created task being a separate execution instance, with its own stack
defined within the task itself.

Task Status

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 3 / 19

Recall

Task
A task is implemented as a C function and must return void and take a
void pointer parameter. It has an entry point, will normally run forever
within an infinite loop, and will not exit.

Task Instance
A single task function definition can be used to create any number of tasks.
Each created task being a separate execution instance, with its own stack
defined within the task itself.

Task Status

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 3 / 19

Recall

Task
A task is implemented as a C function and must return void and take a
void pointer parameter. It has an entry point, will normally run forever
within an infinite loop, and will not exit.

Task Instance
A single task function definition can be used to create any number of tasks.
Each created task being a separate execution instance, with its own stack
defined within the task itself.

Task Status

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 3 / 19

A Typical Task Function

void ATaskFunction(void *pvParameters){
/* Variables can be declared just as per a normal

function. */
int32_t lVariableExample = 0;
/* A task will normally be implemented as an

infinite loop. */
for(;;){

/* The code to implement the task
functionality will go here. */

}
/* Should the task implementation ever break out of

the above loop , then the task must be deleted
before reaching the end of its implementing
function. The NULL parameter passed to the
vTaskDelete () API function indicates that the
task to be deleted is the calling (this) task.
*/

vTaskDelete(NULL);
}

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 4 / 19

Creating Tasks

BaseType_t xTaskCreate(TaskFunction_t pvTaskCode ,
const char * const pcName ,
uint16_t usStackDepth ,void *pvParameters ,
UBaseType_t uxPriority ,TaskHandle_t *pxCreatedTask)

Argument Description
pvTaskCode name of the task function
pcName task name
usStackDepth size of stack for the task
pvParameters a value which is passed into the task function.
uxPriority priority of the task that can be assigned from 0 (the lowest

priority) to configMAX_PRIORITIES - 1.
pxCreatedTask Can be used to pass out a handle to the task being created.

Return values of the function:
pdPASS: the task has been created successfully.
pdFAIL: the task has not been created .

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 5 / 19

Creating Tasks

BaseType_t xTaskCreate(TaskFunction_t pvTaskCode ,
const char * const pcName ,
uint16_t usStackDepth ,void *pvParameters ,
UBaseType_t uxPriority ,TaskHandle_t *pxCreatedTask)

Argument Description
pvTaskCode name of the task function
pcName task name
usStackDepth size of stack for the task
pvParameters a value which is passed into the task function.
uxPriority priority of the task that can be assigned from 0 (the lowest

priority) to configMAX_PRIORITIES - 1.
pxCreatedTask Can be used to pass out a handle to the task being created.

Return values of the function:
pdPASS: the task has been created successfully.
pdFAIL: the task has not been created .

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 5 / 19

Creating Tasks

BaseType_t xTaskCreate(TaskFunction_t pvTaskCode ,
const char * const pcName ,
uint16_t usStackDepth ,void *pvParameters ,
UBaseType_t uxPriority ,TaskHandle_t *pxCreatedTask)

Argument Description
pvTaskCode name of the task function
pcName task name
usStackDepth size of stack for the task
pvParameters a value which is passed into the task function.
uxPriority priority of the task that can be assigned from 0 (the lowest

priority) to configMAX_PRIORITIES - 1.
pxCreatedTask Can be used to pass out a handle to the task being created.

Return values of the function:
pdPASS: the task has been created successfully.
pdFAIL: the task has not been created .

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 5 / 19

Task Parameter

Use task parameter to differentiate between different instances of a
task.

You can pass every data type using void *, and use type casting inside
the implementation function.
void ATaskFunction(void *pvParameters)

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 6 / 19

Task Parameter

Use task parameter to differentiate between different instances of a
task.
You can pass every data type using void *, and use type casting inside
the implementation function.
void ATaskFunction(void *pvParameters)

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 6 / 19

Task Priorities

The maximum number of priorities available is set by the
application-defined configMAX_PRIORITIES within FreeRTOSConfig.h.
(The range of available priorities is 0 to configMAX_PRIORITIES-1)

Low numeric priority values denote low-priority tasks.
The FreeRTOS scheduler will always ensure that the highest priority
task that is able to run is the task selected to enter the Running state.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 7 / 19

Task Priorities

The maximum number of priorities available is set by the
application-defined configMAX_PRIORITIES within FreeRTOSConfig.h.
(The range of available priorities is 0 to configMAX_PRIORITIES-1)
Low numeric priority values denote low-priority tasks.

The FreeRTOS scheduler will always ensure that the highest priority
task that is able to run is the task selected to enter the Running state.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 7 / 19

Task Priorities

The maximum number of priorities available is set by the
application-defined configMAX_PRIORITIES within FreeRTOSConfig.h.
(The range of available priorities is 0 to configMAX_PRIORITIES-1)
Low numeric priority values denote low-priority tasks.
The FreeRTOS scheduler will always ensure that the highest priority
task that is able to run is the task selected to enter the Running state.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 7 / 19

Time Measurement

Tick interrupt is a periodic interrupt which is configured by the
application-defined configTICK_RATE_HZ. The time between two tick
interrupts is called the tick period. Tick period is used to measure
the time.

FreeRTOS API calls always specify time in multiples of tick periods,
which are often referred to simply as ‘ticks’.
The pdMS_TO_TICKS() macro converts a time specified in milliseconds
into a time specified in ticks.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 8 / 19

Time Measurement

Tick interrupt is a periodic interrupt which is configured by the
application-defined configTICK_RATE_HZ. The time between two tick
interrupts is called the tick period. Tick period is used to measure
the time.
FreeRTOS API calls always specify time in multiples of tick periods,
which are often referred to simply as ‘ticks’.

The pdMS_TO_TICKS() macro converts a time specified in milliseconds
into a time specified in ticks.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 8 / 19

Time Measurement

Tick interrupt is a periodic interrupt which is configured by the
application-defined configTICK_RATE_HZ. The time between two tick
interrupts is called the tick period. Tick period is used to measure
the time.
FreeRTOS API calls always specify time in multiples of tick periods,
which are often referred to simply as ‘ticks’.
The pdMS_TO_TICKS() macro converts a time specified in milliseconds
into a time specified in ticks.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 8 / 19

Create a Periodic Task

null loop

for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++){
}

The task always will be in running state and will consume the
processing resource.
The higher priority task remained in the Running state while it
executed the null loop, starving the lower priority task of any
processing time.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 9 / 19

Create a Periodic Task

Use FreeRTOS timing API
void vTaskDelay(TickType_t xTicksToDelay)

void vTaskDelayUntil(TickType_t * pxPreviousWakeTime, TickType_t

xTimeIncrement);

The task goes to non-running (blocking) state and is triggered when
the specified time is elapsed. The task does not use any processing
time while it is in the Blocked state.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 10 / 19

vTaskDelay Function

vTaskDelay places the calling task into the Blocked state for a fixed
number of tick interrupt.

Example
If a task call vTaskDelay(100) when the tick count was 10,000, then it
would immediately enter the Blocked state, and remain in the Blocked
state until the tick count reached 10,100.

Hint
Set INCLUDE_vTaskDelay is set to 1 in FreeRTOSConfig.h.
The macro pdMS_TO_TICKS() can be used to convert a time specified in
milliseconds into a time specified in ticks. For example, calling
vTaskDelay(pdMS_TO_TICKS(100)) will result in the calling task
remaining in the Blocked state for 100 milliseconds.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 11 / 19

vTaskDelayUntil Function

void vTaskDelayUntil(TickType_t * pxPreviousWakeTime, TickType_t

xTimeIncrement);

vTaskDelayUntil() can be used when a fixed execution period is required, as
the time at which the calling task is blocked is absolute, rather than
relative to when the function was called (as is the case with vTaskDelay()).

Argument Description
pxPreviousWakeTime holds the time at which the task last left the Blocked

state (was ‘woken’ up).
xTimeIncrement set next waken up time value as tick count.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 12 / 19

vTaskDelay Function Example

void vPeriodicTask(void *pvParameters){
const TickType_t xDelay3ms = pdMS_TO_TICKS(3);
for(;;){

// some operations
// The task execute every 3 milliseconds exactly

vTaskDelay(xDelay3ms);
}

}

Note
The task period is exactly 3 ms + the execution time of the task.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 13 / 19

vTaskDelay Function Example

void vPeriodicTask(void *pvParameters){
const TickType_t xDelay3ms = pdMS_TO_TICKS(3);
for(;;){

// some operations
// The task execute every 3 milliseconds exactly

vTaskDelay(xDelay3ms);
}

}

Note
The task period is exactly 3 ms + the execution time of the task.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 13 / 19

vTaskDelayUntil Function Example

void vPeriodicTask(void *pvParameters){
TickType_t xLastWakeTime;
const TickType_t xDelay3ms = pdMS_TO_TICKS(3); /* The

xLastWakeTime variable needs to be initialized with
the current tick count. Note that this is the only time
the variable is explicitly written to. After this

xLastWakeTime is managed automatically by the
vTaskDelayUntil () API function. */

xLastWakeTime = xTaskGetTickCount ();

for(;;){
// some operations
vTaskDelayUntil(&xLastWakeTime , xDelay3ms);

}
}

Note
The task period is exactly 3ms.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 14 / 19

vTaskDelayUntil Function Example

void vPeriodicTask(void *pvParameters){
TickType_t xLastWakeTime;
const TickType_t xDelay3ms = pdMS_TO_TICKS(3); /* The

xLastWakeTime variable needs to be initialized with
the current tick count. Note that this is the only time
the variable is explicitly written to. After this

xLastWakeTime is managed automatically by the
vTaskDelayUntil () API function. */

xLastWakeTime = xTaskGetTickCount ();

for(;;){
// some operations
vTaskDelayUntil(&xLastWakeTime , xDelay3ms);

}
}

Note
The task period is exactly 3ms.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 14 / 19

Idle Task

An Idle task is automatically created by the scheduler when
vTaskStartScheduler() is called and executed when there is no other
task in running state.

The idle task has the lowest possible priority (priority zero), to ensure
it never prevents a higher priority application task from entering the
Running state.
Idle task is responsible for cleaning up kernel resources after a task has
been deleted.
It is possible to add application-specific functionality directly into the
idle task through the use of an idle hook function.
Idle hook function is called automatically by the idle task once per
iteration of the idle task loop.
Example uses for the Idle task hook include execution of background
functionalities, measuring the amount of spare processing capacity,
placing the processor into a low power mode.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 15 / 19

Idle Task

An Idle task is automatically created by the scheduler when
vTaskStartScheduler() is called and executed when there is no other
task in running state.
The idle task has the lowest possible priority (priority zero), to ensure
it never prevents a higher priority application task from entering the
Running state.

Idle task is responsible for cleaning up kernel resources after a task has
been deleted.
It is possible to add application-specific functionality directly into the
idle task through the use of an idle hook function.
Idle hook function is called automatically by the idle task once per
iteration of the idle task loop.
Example uses for the Idle task hook include execution of background
functionalities, measuring the amount of spare processing capacity,
placing the processor into a low power mode.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 15 / 19

Idle Task

An Idle task is automatically created by the scheduler when
vTaskStartScheduler() is called and executed when there is no other
task in running state.
The idle task has the lowest possible priority (priority zero), to ensure
it never prevents a higher priority application task from entering the
Running state.
Idle task is responsible for cleaning up kernel resources after a task has
been deleted.

It is possible to add application-specific functionality directly into the
idle task through the use of an idle hook function.
Idle hook function is called automatically by the idle task once per
iteration of the idle task loop.
Example uses for the Idle task hook include execution of background
functionalities, measuring the amount of spare processing capacity,
placing the processor into a low power mode.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 15 / 19

Idle Task

An Idle task is automatically created by the scheduler when
vTaskStartScheduler() is called and executed when there is no other
task in running state.
The idle task has the lowest possible priority (priority zero), to ensure
it never prevents a higher priority application task from entering the
Running state.
Idle task is responsible for cleaning up kernel resources after a task has
been deleted.
It is possible to add application-specific functionality directly into the
idle task through the use of an idle hook function.

Idle hook function is called automatically by the idle task once per
iteration of the idle task loop.
Example uses for the Idle task hook include execution of background
functionalities, measuring the amount of spare processing capacity,
placing the processor into a low power mode.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 15 / 19

Idle Task

An Idle task is automatically created by the scheduler when
vTaskStartScheduler() is called and executed when there is no other
task in running state.
The idle task has the lowest possible priority (priority zero), to ensure
it never prevents a higher priority application task from entering the
Running state.
Idle task is responsible for cleaning up kernel resources after a task has
been deleted.
It is possible to add application-specific functionality directly into the
idle task through the use of an idle hook function.
Idle hook function is called automatically by the idle task once per
iteration of the idle task loop.

Example uses for the Idle task hook include execution of background
functionalities, measuring the amount of spare processing capacity,
placing the processor into a low power mode.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 15 / 19

Idle Task

An Idle task is automatically created by the scheduler when
vTaskStartScheduler() is called and executed when there is no other
task in running state.
The idle task has the lowest possible priority (priority zero), to ensure
it never prevents a higher priority application task from entering the
Running state.
Idle task is responsible for cleaning up kernel resources after a task has
been deleted.
It is possible to add application-specific functionality directly into the
idle task through the use of an idle hook function.
Idle hook function is called automatically by the idle task once per
iteration of the idle task loop.
Example uses for the Idle task hook include execution of background
functionalities, measuring the amount of spare processing capacity,
placing the processor into a low power mode.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 15 / 19

Idle Hook Function

Prototype
void vApplicationIdleHook(void)

Note
Set configUSE_IDLE_HOOK to 1.
An Idle task hook function must never attempt to block or suspend.
If the application makes use of the vTaskDelete() API function, then
the Idle task hook must always return to its caller within a reasonable
time period.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 16 / 19

Other Useful APIs

Chnage a Task Priority
void vTaskPrioritySet(TaskHandle_t pxTask, UBaseType_t uxNewPriority)

Delete a Task
void vTaskDelete(TaskHandle_t pxTaskToDelete)

Suspend a Task
void vTaskSuspend(TaskHandle_t xTaskToSuspend)

Resume a Task
void vTaskResume(TaskHandle_t xTaskToResume)

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 17 / 19

References

Richard Barry. Mastering the FreeRTOS Real Time Kernel. FreeRTOS.org,
2016

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 18 / 19

Question?

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 16, 2018 19 / 19

	Recall
	Task Configuration FreeRTOSBook
	Periodic Task
	Q & A

