
Scheduling and Timing Services in FreeRTOS

Mojtaba Bagherzadeh, Adrien Lapointe

Royal Military College (RMC)

mojtaba@cs.queensu.ca,adrien.lapointe@rmc.ca

February 25, 2018

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 1 / 24

Overview

1 Task Status

2 Task Scheduling

3 Timer Operations

4 Timing Services Overview

5 Q & A

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 2 / 24

Task Status

Task High-level Status

Task Full Status

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 3 / 24

Task Status

The task that is actually running (using processing time) is in the
Running state. On a single core processor only one task can be in
Running state.

Tasks that are not actually running, but are not in either the Blocked
state or the Suspended state, are in the Ready state.
Tasks that are in the Ready state are available to be selected by the
scheduler as the task to enter the Running state. The scheduler will
always choose the highest priority Ready state task to enter the
Running state.
Tasks in Blocked state wait for an event and are automatically moved
back to the Ready state when a temporal or synchronization events
occurs.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 4 / 24

Task Status

The task that is actually running (using processing time) is in the
Running state. On a single core processor only one task can be in
Running state.
Tasks that are not actually running, but are not in either the Blocked
state or the Suspended state, are in the Ready state.

Tasks that are in the Ready state are available to be selected by the
scheduler as the task to enter the Running state. The scheduler will
always choose the highest priority Ready state task to enter the
Running state.
Tasks in Blocked state wait for an event and are automatically moved
back to the Ready state when a temporal or synchronization events
occurs.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 4 / 24

Task Status

The task that is actually running (using processing time) is in the
Running state. On a single core processor only one task can be in
Running state.
Tasks that are not actually running, but are not in either the Blocked
state or the Suspended state, are in the Ready state.
Tasks that are in the Ready state are available to be selected by the
scheduler as the task to enter the Running state. The scheduler will
always choose the highest priority Ready state task to enter the
Running state.

Tasks in Blocked state wait for an event and are automatically moved
back to the Ready state when a temporal or synchronization events
occurs.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 4 / 24

Task Status

The task that is actually running (using processing time) is in the
Running state. On a single core processor only one task can be in
Running state.
Tasks that are not actually running, but are not in either the Blocked
state or the Suspended state, are in the Ready state.
Tasks that are in the Ready state are available to be selected by the
scheduler as the task to enter the Running state. The scheduler will
always choose the highest priority Ready state task to enter the
Running state.
Tasks in Blocked state wait for an event and are automatically moved
back to the Ready state when a temporal or synchronization events
occurs.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 4 / 24

Task Scheduling

Scheduling Algorithm
The scheduling algorithm is the software routine that decides which Ready
task to move into the Running state.

Scheduling Configuration
Scheduling algorithm can be changed using the configUSE_PREEMPTION and
configUSE_TIME_SLICING configuration which are defined in FreeRTOSConfig.h.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 5 / 24

Fixed-Priority Preemptive Scheduling with Time Slicing

Fixed-Priority
Fixed-Priority algorithms do not change the priority assigned to the tasks
being scheduled.

Preemptive
Preemptive algorithms immediately preempt the Running state task if a
higher priority task than the running task enters the Ready state.

Time Slicing
Time slicing is used to share processing time between tasks of equal
priority, even when the tasks do not explicitly yield or enter the Blocked
state. A time slice is equal to the tick period.

Relative Configuration
configUSE_PREEMPTION=1 and configUSE_TIME_SLICING=1

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 6 / 24

Fixed-Priority Preemptive Scheduling with Time Slicing

Figure: Example of Tasks with Different Priorities

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 7 / 24

Fixed-Priority Preemptive Scheduling with Time Slicing

Figure: Example of Two Tasks with Same Priority

Note
When configIDLE_SHOULD_YIELD is set to 1, the task is selected to enter the
Running state after the Idle task does not execute for an entire time slice,
but instead executes for whatever remains of the time slice during which
the Idle task yielded.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 8 / 24

Fixed-Priority Preemptive Scheduling with Time Slicing

Figure: Example of Two Tasks with Same Priority

Note
When configIDLE_SHOULD_YIELD is set to 1, the task is selected to enter the
Running state after the Idle task does not execute for an entire time slice,
but instead executes for whatever remains of the time slice during which
the Idle task yielded.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 8 / 24

Prioritized Preemptive Scheduling (without Time Slicing)

Prioritized Preemptive Scheduling without time slicing maintains the same
task selection and preemption algorithms as described in the previous
section, but does not use time slicing to share processing time between
tasks of equal priority.

Relative Configuration
configUSE_PREEMPTION=1 and configUSE_TIME_SLICING=0

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 9 / 24

Prioritized Preemptive Scheduling (without Time Slicing)

Figure: Example of Two Tasks with Same Priority

Note
No time slicing is occurred between the two tasks with same priority.
This algorithms minimize the context switching overhead.
Turning time slicing off can also result in tasks of equal priority
receiving greatly different amounts of processing time.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 10 / 24

Prioritized Preemptive Scheduling (without Time Slicing)

Figure: Example of Two Tasks with Same Priority

Note
No time slicing is occurred between the two tasks with same priority.
This algorithms minimize the context switching overhead.
Turning time slicing off can also result in tasks of equal priority
receiving greatly different amounts of processing time.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 10 / 24

Co-operative Scheduling

When the co-operative scheduler is used, a context switch will only occur
when the Running state task enters the Blocked state, or the Running state
task explicitly yields (manually requests a re-schedule) by calling
taskYIELD(). Tasks are never preempted, so time slicing cannot be used.

Relative Configuration
configUSE_PREEMPTION=0 and configUSE_TIME_SLICING=Any value

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 11 / 24

Co-operative Scheduling

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 12 / 24

Software Timer

Defnition
Software timers allow to execute a function at a specific time in the future,
or periodically with a fixed frequency.

Software Timer’s Callback Function
A function which is executed by the timer and implemented as a C
function.

It returns void, and takes a handle to a software timer as its only
parameter.
It executes from start to finish, and exits in the normal way.
It should be kept short, and must not enter the Blocked state.

Timer Activation
Add source file FreeRTOS/Source/timers.c to your project.
Set configUSE_TIMERS to 1 in FreeRTOSConfig.h.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 13 / 24

Software Timer

Defnition
Software timers allow to execute a function at a specific time in the future,
or periodically with a fixed frequency.

Software Timer’s Callback Function
A function which is executed by the timer and implemented as a C
function.

It returns void, and takes a handle to a software timer as its only
parameter.
It executes from start to finish, and exits in the normal way.
It should be kept short, and must not enter the Blocked state.

Timer Activation
Add source file FreeRTOS/Source/timers.c to your project.
Set configUSE_TIMERS to 1 in FreeRTOSConfig.h.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 13 / 24

Software Timer

Defnition
Software timers allow to execute a function at a specific time in the future,
or periodically with a fixed frequency.

Software Timer’s Callback Function
A function which is executed by the timer and implemented as a C
function.

It returns void, and takes a handle to a software timer as its only
parameter.
It executes from start to finish, and exits in the normal way.
It should be kept short, and must not enter the Blocked state.

Timer Activation
Add source file FreeRTOS/Source/timers.c to your project.
Set configUSE_TIMERS to 1 in FreeRTOSConfig.h.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 13 / 24

Timer Service Task

All software timer callback functions are executed in the context of the
timer service task.

The timer service task is a standard FreeRTOS task that is created
automatically when the scheduler is started. Its priority and stack size
are set by the configTIMER_TASK_PRIORITY and
configTIMER_TASK_STACK_DEPTH.
All of timers’ related commands are processed by timer service task.
Calling blocking API by a timer callback function will block the timer
service task. As the result, all timers will be affected.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 14 / 24

Timer Service Task

All software timer callback functions are executed in the context of the
timer service task.
The timer service task is a standard FreeRTOS task that is created
automatically when the scheduler is started. Its priority and stack size
are set by the configTIMER_TASK_PRIORITY and
configTIMER_TASK_STACK_DEPTH.

All of timers’ related commands are processed by timer service task.
Calling blocking API by a timer callback function will block the timer
service task. As the result, all timers will be affected.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 14 / 24

Timer Service Task

All software timer callback functions are executed in the context of the
timer service task.
The timer service task is a standard FreeRTOS task that is created
automatically when the scheduler is started. Its priority and stack size
are set by the configTIMER_TASK_PRIORITY and
configTIMER_TASK_STACK_DEPTH.
All of timers’ related commands are processed by timer service task.

Calling blocking API by a timer callback function will block the timer
service task. As the result, all timers will be affected.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 14 / 24

Timer Service Task

All software timer callback functions are executed in the context of the
timer service task.
The timer service task is a standard FreeRTOS task that is created
automatically when the scheduler is started. Its priority and stack size
are set by the configTIMER_TASK_PRIORITY and
configTIMER_TASK_STACK_DEPTH.
All of timers’ related commands are processed by timer service task.
Calling blocking API by a timer callback function will block the timer
service task. As the result, all timers will be affected.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 14 / 24

Software Timer

There are two types of software timer:
One-shot timers: Once started, a one-shot timer will execute its
callback function once only. A one-shot timer can be restarted
manually, but will not restart itself.

Auto-reload timers: Once started, an auto-reload timer will re-start
itself each time it expires, resulting in the periodic execution of its
callback function.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 15 / 24

Software Timer

There are two types of software timer:
One-shot timers: Once started, a one-shot timer will execute its
callback function once only. A one-shot timer can be restarted
manually, but will not restart itself.
Auto-reload timers: Once started, an auto-reload timer will re-start
itself each time it expires, resulting in the periodic execution of its
callback function.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 15 / 24

Software Timer

There are two types of software timer:
One-shot timers: Once started, a one-shot timer will execute its
callback function once only. A one-shot timer can be restarted
manually, but will not restart itself.
Auto-reload timers: Once started, an auto-reload timer will re-start
itself each time it expires, resulting in the periodic execution of its
callback function.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 15 / 24

Software Timer

Software timer can be in one of the following two states:
Dormant: A dormant software timer exists, and can be referenced by
its handle, but is not running, so its callback functions will not be
executed.

Running: A Running software timer will execute its callback function
after a time equal to its period has elapsed since the software timer
entered the Running state, or since the time that software timer was
reset.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 16 / 24

Software Timer

Software timer can be in one of the following two states:
Dormant: A dormant software timer exists, and can be referenced by
its handle, but is not running, so its callback functions will not be
executed.
Running: A Running software timer will execute its callback function
after a time equal to its period has elapsed since the software timer
entered the Running state, or since the time that software timer was
reset.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 16 / 24

One-shot Timer States

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 17 / 24

Auto-reload Timer States

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 18 / 24

Create Timer

TimerHandle_t xTimerCreate(const char * const pcTimerName ,
TickType_t xTimerPeriodInTicks , UBaseType_t uxAutoReload
, void * pvTimerID , TimerCallbackFunction_t
pxCallbackFunction);

Argument Description
pcTimerName name of the timer
xTimerPeriodInTicks the timer’s period specified in ticks.
uxAutoReload set to pdTRUE to create an auto-reload timer.
pvTimerID The timer ID.
pxCallbackFunction the software timer callback function which is a simply

C functions with the mentioned prototype.

Return values of the function:
NULL: the time has not been created successfully.
non-NULL: the time has been created and the time handle is returned .

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 19 / 24

Create Timer

TimerHandle_t xTimerCreate(const char * const pcTimerName ,
TickType_t xTimerPeriodInTicks , UBaseType_t uxAutoReload
, void * pvTimerID , TimerCallbackFunction_t
pxCallbackFunction);

Argument Description
pcTimerName name of the timer
xTimerPeriodInTicks the timer’s period specified in ticks.
uxAutoReload set to pdTRUE to create an auto-reload timer.
pvTimerID The timer ID.
pxCallbackFunction the software timer callback function which is a simply

C functions with the mentioned prototype.

Return values of the function:
NULL: the time has not been created successfully.
non-NULL: the time has been created and the time handle is returned .

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 19 / 24

Create Timer

TimerHandle_t xTimerCreate(const char * const pcTimerName ,
TickType_t xTimerPeriodInTicks , UBaseType_t uxAutoReload
, void * pvTimerID , TimerCallbackFunction_t
pxCallbackFunction);

Argument Description
pcTimerName name of the timer
xTimerPeriodInTicks the timer’s period specified in ticks.
uxAutoReload set to pdTRUE to create an auto-reload timer.
pvTimerID The timer ID.
pxCallbackFunction the software timer callback function which is a simply

C functions with the mentioned prototype.

Return values of the function:
NULL: the time has not been created successfully.
non-NULL: the time has been created and the time handle is returned .

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 19 / 24

Star a Timer

TimerHandle_t xTimerStart(TimerHandle_t xTimer , TickType_t
xTicksToWait)

Argument Description
xTimer the handle of the timer that will be started. The handle

is returned from the call to xTimerCreate() used to
create the software timer.

xTicksToWait specifies the maximum amount of time the calling task
should remain in the Blocked state to wait for space to
become available on the timer command queue.

Return values of the function:
pdPASS: successful execution.
pdFALSE: un-successful execution .

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 20 / 24

Star a Timer

TimerHandle_t xTimerStart(TimerHandle_t xTimer , TickType_t
xTicksToWait)

Argument Description
xTimer the handle of the timer that will be started. The handle

is returned from the call to xTimerCreate() used to
create the software timer.

xTicksToWait specifies the maximum amount of time the calling task
should remain in the Blocked state to wait for space to
become available on the timer command queue.

Return values of the function:
pdPASS: successful execution.
pdFALSE: un-successful execution .

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 20 / 24

Star a Timer

TimerHandle_t xTimerStart(TimerHandle_t xTimer , TickType_t
xTicksToWait)

Argument Description
xTimer the handle of the timer that will be started. The handle

is returned from the call to xTimerCreate() used to
create the software timer.

xTicksToWait specifies the maximum amount of time the calling task
should remain in the Blocked state to wait for space to
become available on the timer command queue.

Return values of the function:
pdPASS: successful execution.
pdFALSE: un-successful execution .

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 20 / 24

Example

1 #define mainONE_SHOT_TIMER_PERIOD pdMS_TO_TICKS(3333)
#define mainAUTO_RELOAD_TIMER_PERIOD pdMS_TO_TICKS(500)
int main(void){
TimerHandle_t xAutoReloadTimer , xOneShotTimer;

5 BaseType_t xTimer1Started , xTimer2Started;
xOneShotTimer =xTimerCreate("OneShot",

mainONE_SHOT_TIMER_PERIOD ,pdFALS ,0,
prvOneShotTimerCallback);

xAutoReloadTimer = xTimerCreate("AutoReload",
mainAUTO_RELOAD_TIMER_PERIOD ,pdTRUE ,0,
prvAutoReloadTimerCallback);

if((xOneShotTimer != NULL)&&(xAutoReloadTimer != NULL)){
xTimer1Started = xTimerStart(xOneShotTimer , 0);

10 xTimer2Started = xTimerStart(xAutoReloadTimer , 0);
// rest of the code

}

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 21 / 24

Useful APIs

Get and Set TimerID
void vTimerSetTimerID(const TimerHandle_t xTimer, void *pvNewID)

void *pvTimerGetTimerID(TimerHandle_t xTimer)

Change the Period of a Timer
xTimerChangePeriod(TimerHandle_t xTimer,TickType_t

xNewTimerPeriodInTicks,TickType_t xTicksToWait)

Reseting a Timer
xTimerReset(TimerHandle_t xTimer, TickType_t xTicksToWait)

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 22 / 24

References

Richard Barry. Mastering the FreeRTOS Real Time Kernel. FreeRTOS.org,
2016

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 23 / 24

Question?

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS Tutorial February 25, 2018 24 / 24

	Task Status
	Task Scheduling
	Timer Operations
	Timing Services Overview
	Q & A

