Inter Task Communication

Mojtaba Bagherzadeh, Adrien Lapointe

Royal Military College (RMC)

mojtaba@cs.queensu.ca,adrien.lapointe@rmc.ca

February 25, 2018

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018



Overview

@ Communication Types
© Task to Task Communication
© Mailbox Creation

QQ&A

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 2/19



Communication Type

o Task to Task

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 3/19



Communication Type

@ Task to Task
@ Task to Interrupt Service Routine (ISR)

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 3/19



Communication Type

@ Task to Task
@ Task to Interrupt Service Routine (ISR)
@ ISR to Task

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 3/19



Task to Task Communication

Queue in FreeRTOS

@ A queue is a space that can hold a finite number of fixed size data
items. The maximum number of items a queue can hold is called its
length.

@ Queues are normally used as First In First Out (FIFO) buffers, where

data is written to the end (tail) of the queue and removed from the
front (head) of the queue.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS

February 25, 2018 4 /19



Task to Task Communication

Queue in FreeRTOS

@ A queue is a space that can hold a finite number of fixed size data

items. The maximum number of items a queue can hold is called its
length.

@ Queues are normally used as First In First Out (FIFO) buffers, where

data is written to the end (tail) of the queue and removed from the
front (head) of the queue.

W
Queue Implementation

@ Queue by copy: The data sent to the queue is copied byte for byte
into the queue. FreeRTOS uses the queue by copy method.

@ Queue by reference: Queues only holds pointers to the data sent to
the queue, not the data itself.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS

February 25, 2018 4 /19



Queue by Copy

@ Stack variables can be sent directly to a queue, even though the
variables will not exist after the related function has exited.

@ The sending task can immediately re-use the variable or buffer that
was sent to the queue.

@ Queuing by copy does not prevent the queue from also being used to
queue by reference.

@ The RTOS takes complete responsibility for allocating the memory
used to store data.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 5/ 19



@ Stack variables can be sent directly to a queue, even though the
variables will not exist after the related function has exited.

@ The sending task can immediately re-use the variable or buffer that
was sent to the queue.

@ Queuing by copy does not prevent the queue from also being used to
queue by reference.

@ The RTOS takes complete responsibility for allocating the memory
used to store data.

Cons

| A

If the size of the data being stored in the queue is large, then it is
preferable to use the queue to transfer pointers to the data, rather than
copy the data itself into and out of the queue byte by byte.

v

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 5/ 19



How Does Queue-based Communication work?
%:H:H:H:I‘

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 6 /19



How Does Queue-based Communication work?
%:H:H:H:I‘

Task A Task B
ueue

R

x = 10 Send T

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 6 /19



How Does Queue-based Communication work?

Task A T Task B
T
—

( TaskA \ e Task B

o F:l I:J :l I:l ‘
Q - 10; Send T
( Task A \ TS Task B

int s f@gg\ int v
\x = 20; Send f

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 6 /19



How Does Q based Communication

( Task A \ Task B
ueue

int x; :I:I:I:I:I‘ int ys

—

( TaskA \ Task B
ueue
R
T

Send

( Task A \ Task B
ueue
sne x; F:I:I:I‘ int y;

\x = 20; Send

( Task A \ Task B
ueue
Receive
x = 20; 77 ¥ now equals 10

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018



How Does Queue-based Communication work?

TR Tasca
ueue
int x; :I:I:I:l:l‘ int ys
—
( TaskA \ Task B
ueue
AN
Q - 10; Send T

( Task A \ Task B

jueue
int x7 ﬁ:ll:ll:l‘ int v
Q - 20; Send f
[ Task A \
ueue
- |
x - 20 Recelve 777 now equals 10

T Tt 2]

// y now equals 10

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS bruary 25, 2018 6 /19



Create a Queue

QueueHandle_t xQueueCreate( UBaseType_t uxQueuelength,
UBaseType_t uxItemSize );

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 7/ 19



Create a Queue

QueueHandle_t xQueueCreate( UBaseType_t uxQueuelength,
UBaseType_t uxItemSize );

] Argument \ Description
uxQueuelLength | the maximum number of items that the queue can hold
at any time.
uxltemSize the size in bytes of each data item that can be stored
in the queue.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 7/ 19



Create a Queue

QueueHandle_t xQueueCreate( UBaseType_t uxQueuelength,
UBaseType_t uxItemSize );

] Argument \ Description
uxQueuelLength | the maximum number of items that the queue can hold
at any time.
uxltemSize the size in bytes of each data item that can be stored
in the queue.

Return values of the function:
@ NULL: the queue has not been created successfully because of
insufficient heap memory.
@ non-NULL: the queue has been created and the queue handle is

returned.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 7/ 19



Blocking Read and Write

Blocking on Queue Reads

@ A task can specify a ‘block’ time when reading from a queue. This is
the time the task will be kept in the Blocked state to wait for data to
be available from the queue.

@ The task be moved to the Ready state when data is written into the
queue. It also is moved from the Blocked state to the Ready state if
the specified block time expires before data becomes available.

o If a Queue has multiple readers, only one task (highest priority task)
will be unblocked when data becomes available. If blocked tasks have
equal priority, then the task that with longest waiting time will be
unblocked.

v

Blocking on Queue Reads
Similarly, tasks can specify blocking time for writing in a queue.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 8 /19



xQueueSend*( QueueHandle_t xQueue, const void *
pvitemToQueue, TickType_t xTicksToWait )

Description

xQueueSendToBack() sends data to the back (tail) of a queue.
xQueueSendToFront () sends data to the front (head) of a queue.
xQueueSend() is equivalent t0 xQueueSendToBack().

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 9 /19



Send a Message

xQueueSend*( QueueHandle_t xQueue, const void *
pvitemToQueue, TickType_t xTicksToWait )

Description

xQueueSendToBack() sends data to the back (tail) of a queue.
xQueueSendToFront () sends data to the front (head) of a queue.
xQueueSend() is equivalent t0 xQueueSendToBack().

’ Argument \ Description
xQueue the handle of the queue.
pvitemToQueue | a pointer to the data to be copied into the queue.
xTicksToWait the maximum amount of time the task should remain
in the Blocked state.

February 25, 2018

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS



Send a Message

xQueueSend*( QueueHandle_t xQueue, const void *
pvitemToQueue, TickType_t xTicksToWait )

Description

xQueueSendToBack() sends data to the back (tail) of a queue.
xQueueSendToFront () sends data to the front (head) of a queue.
xQueueSend() is equivalent t0 xQueueSendToBack().

’ Argument \ Description
xQueue the handle of the queue.
pvitemToQueue | a pointer to the data to be copied into the queue.
xTicksToWait the maximum amount of time the task should remain
in the Blocked state.

Return values of the function:
@ pdPASsS: data was successfully sent to the queue.
@ errQUEVE_FULL: data could not be written to the queue because the

queue was already full.
9/19

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018



Receive a Message

BaseType_t xQueueReceive( QueueHandle_t xQueue,void * const
pvBuffer, TickType_t xTicksToWait );

Description

xQueueReceive() receives (read) an item from a queue. The received item
is removed from the queue.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 10 / 19



Receive a Message

BaseType_t xQueueReceive( QueueHandle_t xQueue,void * const
pvBuffer, TickType_t xTicksToWait );

Description
xQueueReceive() receives (read) an item from a queue. The received item
is removed from the queue.

] Argument \ Description ‘
xQueue the handle of the queue.
pvBuffer a pointer to the memory into which the received data

will be copied.
xTicksToWait | the maximum amount of time the task should remain
in the Blocked state.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 10 / 19



Receive a Message

BaseType_t xQueueReceive( QueueHandle_t xQueue,void * const
pvBuffer, TickType_t xTicksToWait );

Description
xQueueReceive() receives (read) an item from a queue. The received item
is removed from the queue.

] Argument \ Description ‘
xQueue the handle of the queue.
pvBuffer a pointer to the memory into which the received data

will be copied.
xTicksToWait | the maximum amount of time the task should remain
in the Blocked state.
Return values of the function:
@ pdrass: data was successfully read from the queue.
@ errQUEUE_EMPTY: data cannot be read from the queue because the
queue is already empty.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 10 / 19




Chec ues Status

UBaseType_t uxQueueMessagesWaiting( QueueHandle_t xQueue );

Description

uxQueueMessagesWaiting queries the number of items that are currently in a
queue.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 11 /19



Check Queues Status

UBaseType_t uxQueueMessagesWaiting( QueueHandle_t xQueue );

Description

uxQueueMessagesWaiting queries the number of items that are currently in a
queue.

] Argument \ Description \

’ xQueue ‘ the handle of the queue. ‘

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 11 /19



Example: Create Queues

QueueHandle_t xQueue;
int main( void ){
/* The queue %s created to hold a mazimum of 5 walues, each
of which s large enough to hold a wvariable of type
int32_t. */

xQueue = xQueueCreate( 5, sizeof ( int32_t ) );
if ( xQueue !'= NULL ){
// rest of the code
}
elseq
//The queue could mnot be created.
}
for( ;; )3
}

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 12 /19



Example: Write to a Queues

void vSenderTask( void *pvParameters ){
int32_t 1lValueToSend;

BaseType_t xStatus;

lValueToSend = ( int32_t ) pvParameters;

for( ;; J{
xStatus = xQueueSendToBack( xQueue, &lValueToSend, 0 );
if ( xStatus != pdPASS ){

vPrintString( "Could not send to the queue.\r\n" );
}
}
}

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 13 /19



Example: Read from a Queues

static void vReceiverTask( void *pvParameters ){
int32_t 1lReceivedValue;

BaseType_t xStatus;

const TickType_t xTicksToWait = pdMS_TO_TICKS( 100 );

for( ;; )
{
xStatus = xQueueReceive ( xQueue, &lReceivedValue,
xTicksToWait ) ;
if ( xStatus == pdPASS ){
vPrintStringAndNumber ( "Received = ", 1lReceivedValue );
}
elseq{
vPrintString( "Could not receive from the queue.\r\n'" );
}
}
}

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 14 / 19



Receiving Data From Multiple Sourc

typedef struct
{

ID_t eDataID;
int32_t lDataValue;

Controller

Another Task

HMI Task

Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018



Receiving Data From Multiple Sources

/* Define an enumerated type used to identify the source of
the data. */
typedef enum{
eSenderl ,
eSender2
} ID_t;

//Define the structure type that will be passed on the queue
typedef struct{

uint8_t edataValue;

ID_t eDataSource;

} Data_t;

// create a queue
xQueue = xQueueCreate( 3, sizeof( Data_t ) );

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 16 / 19



Receiving Data From Multiple Sourc

xStatus = xQueueReceive( xQueue, &xReceivedStructure,
if ( xStatus == pdPASS ){
if ( xReceivedStructure.eDataSource == eSenderl {

vPrintStringAndNumber (

"From Sender 1

xReceivedStructure.edataValue );

}
elseq{
vPrintStringAndNumber (

"From Sender 2

xReceivedStructure.edataValue );

Mojtaba Bagherzadeh, Adrien Lapointe

FreeRTOS

"

>

>

February 25, 2018

0

)

17 / 19



Create a Mailbox

A mailbox is used to hold data that can be read by any task, or any
interrupt service routine. The data does not pass through the mailbox, but
instead remains in the mailbox until it is overwritten.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 18 / 19



Create a Mailbox

Mailbox

A mailbox is used to hold data that can be read by any task, or any
interrupt service routine. The data does not pass through the mailbox, but
instead remains in the mailbox until it is overwritten.

| A

Overwrite Data in queue

xQueueOverwrite() APl can be used to overwrite data in a queue.

xQueueOverwrite( QueueHandle_t xQueue, const void * pvItemToQueue )

Read Data without Remove

xQueuePeek () APl can be used to read data in a queue without removing it.
xQueuePeek ( QueueHandle_t xQueue, void * const pvBuffer, TickType_t
xTicksToWait );

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 18 / 19



Question?

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS February 25, 2018 19 / 19



	Communication Types
	Task to Task Communication
	Mailbox Creation
	Q & A

