
Resource Management in FreeRTOS

Mojtaba Bagherzadeh, Adrien Lapointe

Royal Military College (RMC)

mojtaba@cs.queensu.ca,adrien.lapointe@rmc.ca

March 2, 2018

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 1 / 17



Overview

1 Resource Management

2 Mutual Exclusion

3 Critical Section

4 Suspending (or Locking) the Scheduler

5 Gatekeeper Task

6 Q & A

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 2 / 17



The Problem

In a multitasking system, there is potential for errors if one task starts to
access a resource, but does not complete its access before being
transitioned out of the Running state. This issue can happen in different
situations such as:

Accessing peripherals devices (e.g., writing in display by multiple tasks)
Read, modify, write operations
Non-atomic access to variables (e.g., updating multiple members of a
structure or updating a 32-bit variable on a 16-bit machine)
Function reentrancy

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 3 / 17



The Problem

In a multitasking system, there is potential for errors if one task starts to
access a resource, but does not complete its access before being
transitioned out of the Running state. This issue can happen in different
situations such as:

Accessing peripherals devices (e.g., writing in display by multiple tasks)

Read, modify, write operations
Non-atomic access to variables (e.g., updating multiple members of a
structure or updating a 32-bit variable on a 16-bit machine)
Function reentrancy

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 3 / 17



The Problem

In a multitasking system, there is potential for errors if one task starts to
access a resource, but does not complete its access before being
transitioned out of the Running state. This issue can happen in different
situations such as:

Accessing peripherals devices (e.g., writing in display by multiple tasks)
Read, modify, write operations

Non-atomic access to variables (e.g., updating multiple members of a
structure or updating a 32-bit variable on a 16-bit machine)
Function reentrancy

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 3 / 17



The Problem

In a multitasking system, there is potential for errors if one task starts to
access a resource, but does not complete its access before being
transitioned out of the Running state. This issue can happen in different
situations such as:

Accessing peripherals devices (e.g., writing in display by multiple tasks)
Read, modify, write operations
Non-atomic access to variables (e.g., updating multiple members of a
structure or updating a 32-bit variable on a 16-bit machine)

Function reentrancy

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 3 / 17



The Problem

In a multitasking system, there is potential for errors if one task starts to
access a resource, but does not complete its access before being
transitioned out of the Running state. This issue can happen in different
situations such as:

Accessing peripherals devices (e.g., writing in display by multiple tasks)
Read, modify, write operations
Non-atomic access to variables (e.g., updating multiple members of a
structure or updating a 32-bit variable on a 16-bit machine)
Function reentrancy

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 3 / 17



Mutual Exclusion

To ensure data consistency when sharing a resource, a ‘mutual exclusion’
technique can be used. In FreeRTOS Mutual exclusion can be implemented
using several methods including

Critical section
Suspending (or Locking) the scheduler
Mutexes (and binary semaphores)
Gatekeeper tasks

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 4 / 17



Critical Section

taskENTER_CRITICAL (); // start critical section
{

// access to shared resources
}
taskEXIT_CRITICAL (); // exit critical section

How Does It Work?
A task that called taskENTER_CRITICAL() is guaranteed to remain in the
Running state until the critical section is exited.

How Critical Section Is Implemented?
It is implemented by disabling interrupts, either completely, or increasing
the task priority up to the interrupt priority set by
configMAX_SYSCALL_INTERRUPT_PRIORITY.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 5 / 17



Critical Section

taskENTER_CRITICAL (); // start critical section
{

// access to shared resources
}
taskEXIT_CRITICAL (); // exit critical section

How Does It Work?
A task that called taskENTER_CRITICAL() is guaranteed to remain in the
Running state until the critical section is exited.

How Critical Section Is Implemented?
It is implemented by disabling interrupts, either completely, or increasing
the task priority up to the interrupt priority set by
configMAX_SYSCALL_INTERRUPT_PRIORITY.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 5 / 17



Critical Section

taskENTER_CRITICAL (); // start critical section
{

// access to shared resources
}
taskEXIT_CRITICAL (); // exit critical section

How Does It Work?
A task that called taskENTER_CRITICAL() is guaranteed to remain in the
Running state until the critical section is exited.

How Critical Section Is Implemented?
It is implemented by disabling interrupts, either completely, or increasing
the task priority up to the interrupt priority set by
configMAX_SYSCALL_INTERRUPT_PRIORITY.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 5 / 17



Suspending (or Locking) the Scheduler

vTaskSuspendAll( ); // start critical section
{

// access to shared resources
}
xTaskResumeAll( void ); // exit critical section

How Does It Work?
Disable the preemption by disabling the scheduler allows the task remain in
Running state until scheduler is resumed.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 6 / 17



Suspending (or Locking) the Scheduler

vTaskSuspendAll( ); // start critical section
{

// access to shared resources
}
xTaskResumeAll( void ); // exit critical section

How Does It Work?
Disable the preemption by disabling the scheduler allows the task remain in
Running state until scheduler is resumed.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 6 / 17



Mutexes (and Binary Semaphores)

Definition
The word MUTEX originates from ‘MUTual EXclusion’. The mutex can be
considered as a token that is associated with a resource being shared. To
use the resource, a task should first take the mutex, hold it during use, and
release it after use.

Implemnation
The mutex is implemented as a binary semaphore which should be returned
after use. To use the mutex, the configUSE_MUTEXES must be set to 1.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 7 / 17



Mutexes (and Binary Semaphores)

Definition
The word MUTEX originates from ‘MUTual EXclusion’. The mutex can be
considered as a token that is associated with a resource being shared. To
use the resource, a task should first take the mutex, hold it during use, and
release it after use.

Implemnation
The mutex is implemented as a binary semaphore which should be returned
after use. To use the mutex, the configUSE_MUTEXES must be set to 1.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 7 / 17



How does mutex work?

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 8 / 17



How does mutex work?

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 8 / 17



How does mutex work?

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 8 / 17



How does mutex work?

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 8 / 17



How does mutex work?

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 8 / 17



How does mutex work?

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 8 / 17



Mutex Operations

Create a Semaphore
SemaphoreHandle_t xSemaphoreCreateMutex( void );

xSemaphoreCreateMutex creates a mutex and returns its handle.

Take a Semaphore
xSemaphoreTake( SemaphoreHandle_t xSemaphore,TickType_t xTicksToWait )

xSemaphoreTake take the semaphore specified by SemaphoreHandle_t. The
owner task blocks if the semaphore is taken by others. xTicksToWait

specifies the maximum blocking time.

Release a Semaphore
xSemaphoreGive( SemaphoreHandle_t xSemaphore )

xSemaphoreGive release the semaphore which is specified by
SemaphoreHandle_t.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 9 / 17



Mutex Operations

Create a Semaphore
SemaphoreHandle_t xSemaphoreCreateMutex( void );

xSemaphoreCreateMutex creates a mutex and returns its handle.

Take a Semaphore
xSemaphoreTake( SemaphoreHandle_t xSemaphore,TickType_t xTicksToWait )

xSemaphoreTake take the semaphore specified by SemaphoreHandle_t. The
owner task blocks if the semaphore is taken by others. xTicksToWait

specifies the maximum blocking time.

Release a Semaphore
xSemaphoreGive( SemaphoreHandle_t xSemaphore )

xSemaphoreGive release the semaphore which is specified by
SemaphoreHandle_t.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 9 / 17



Mutex Operations

Create a Semaphore
SemaphoreHandle_t xSemaphoreCreateMutex( void );

xSemaphoreCreateMutex creates a mutex and returns its handle.

Take a Semaphore
xSemaphoreTake( SemaphoreHandle_t xSemaphore,TickType_t xTicksToWait )

xSemaphoreTake take the semaphore specified by SemaphoreHandle_t. The
owner task blocks if the semaphore is taken by others. xTicksToWait

specifies the maximum blocking time.

Release a Semaphore
xSemaphoreGive( SemaphoreHandle_t xSemaphore )

xSemaphoreGive release the semaphore which is specified by
SemaphoreHandle_t.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 9 / 17



Problems with Mutex

Priority Inversion

Deadlock
Self-deadlock

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 10 / 17



Problems with Mutex

Priority Inversion
Deadlock

Self-deadlock

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 10 / 17



Problems with Mutex

Priority Inversion
Deadlock
Self-deadlock

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 10 / 17



Priority Inversion

A higher priority task is delayed by a lower priority task when sharing a
resource that is taken by the low priority task before the high priority task.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 11 / 17



Priority Inversion Worst Case Scenario

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 12 / 17



Possible Solutions for Priority Inversion

Priority Inheritance
Ceiling Protocols

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 13 / 17



Deadlock

Deadlock
Deadlock occurs when two tasks cannot proceed because they are both
waiting for a resource that is held by the other. Using design time analysis
and specify the maximum blocking time for taking mutex can help to
prevent deadlock.

Self-deadlock
Self-deadlock happens if a task attempts to take the same mutex more
than once, without first releasing the mutex. Using recursive mutexes can
solve this problem. Related APIs are:

Create semaphores using xSemaphoreCreateRecursiveMutex()

Take semaphores using xSemaphoreTakeRecursive()

Release semaphores using xSemaphoreGiveRecursive()

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 14 / 17



Gatekeeper Task

A gatekeeper task provides a clean method of implementing mutual
exclusion without the risk of priority inversion or deadlock.
A gatekeeper task is a task that has sole ownership of a resource.
Only the gatekeeper task is allowed to access the resource directly.
Any other task needing to access the resource can do so only indirectly
by using the services of the gatekeeper.
A gatekeeper task gets requests using a queue and serializes requests
for using the related resource.

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 15 / 17



References

Richard Barry. Mastering the FreeRTOS Real Time Kernel. FreeRTOS.org,
2016

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 16 / 17



Question?

Mojtaba Bagherzadeh, Adrien Lapointe FreeRTOS March 2, 2018 17 / 17


	Resource Management
	Mutual Exclusion
	Critical Section
	Suspending (or Locking) the Scheduler
	Gatekeeper Task
	Q & A

