
EEE499	- Real-Time	Embedded	
System	Design

Basic	Real-Time	System	Terminology



Outline

• Real-time	definitions
• Soft	versus	hard	real-time
• Timing	attributes	of	RTS
• Jobs,	tasks,	processes	&	resources
• Specifying	RTS	timing	constraints
• Embedded	Systems



Temporary	Definition

“A	real-time	system	is	required	to	complete	
its	work	and	deliver	its	service	on	a	timely

basis”	[1]



Real-Time	Systems	Definition

A	simple	model

Real-time	
Control	System

... ...sensors actuators



Real-Time	Systems	Definition

1. “A	real-time	system	is	a	computer	system	
that	must	satisfy	bounded	response-time
constraints	or	risk	severe	consequences,	
including	failure” [2]

2. “A	real-time	system	is	one	whose	logical	
correctness	is	based	on	both	the	correctness	
of	the	output and	their	timeliness.”	[2]



Real-Time	Systems	Definition

3. “A	real-time	system	is	a	software	system	that	
maintains	an	ongoing	and	timely interaction	
with	its	environment”	[3]

4. “Any	system	in	which	the	time at	which		
output	is	produced	is	significant.	This	is	
usually	because	the	input	corresponds	to	
some	movement	in	the	physical	world,	and	
the	output	has	to	relate	to	that	same	
movement”	[4]



Real-Time	Systems	Definition
1. Correctness
2. Timeliness
3. Interaction	with	environment
4. Consequences

A	computer	system	is	one	whose	logical	correctness	
is	based	on	both	the	correctnessof	the	output	and	
their	timeliness.	Where	the	timeliness	is	based	an	
ongoing	interaction	with	the	environment.	Failure	
to	be	logically	correct	has	consequences.



Real-Time	Systems	Definition

Timeliness	=	Instantaneous	?



Real-Time	Systems	Definition

Timeliness	≠	Instantaneous



Real-Time	Systems	Definition

“All	practical	systems	are	ultimately	
real-time”	[2]



Real-Time	Systems	Definition

Where	do	we	draw	the	line?



Real-Time	Systems	Definition

Soft	real-time
vs.

Hard	real-time
vs.

Quality	of	service



Hard	versus	Soft	Real-Time
• there	is	no	unanimous	agreement	within	
the	field	as	to	the	exact	boundary	between	
hard,	soft	real-time	and	non-real-time.

• each	definition	is	generally	influenced	by	
one	of	these	points	of	view:
– functional	criticality
– usefulness	of	late	results
– deterministic	/	probabilistic	constraints

A	good	analogy	is	guaranteed versus	best	effort services



Hard	versus	Soft	Real-Time

• functional	criticality
– the	classification	as	to	hard	versus	soft	depends	upon	
the	consequences	of	a	missed	deadline

• usefulness	of	late	results
– the	usefulness	of	a	tardy	hard	real-time	job	decreases	
sharply	while	a	soft	real-time	job	more	slowly	
degrades	with	tardiness

• deterministic	/	probabilistic	constraints
– a	hard	deadline	must	never	be	missed,	while	a	soft	
deadline	must	be	met	x%	of	the	time



Hard	versus	Soft	Real-Time

[7] [7]

100%

0%

Deadline

Time

Release

Utility

After	deadline,	
Utility	is	
Negative

100%

0%

Deadline

Time

Release

Utility

After	deadline,	
Utility	
diminishes	
according	to	
some	function	
F(t)

F(t)



Hard	versus	Soft	Real-Time

[7] [7]

100%

0%

Deadline

Time

Release

Utility

After	deadline,	
Utility	is	
Negative

Before	deadline,	
Utility	is	
Negative

100%

0%
Time

Release

Utility Deadline	does	not	exist



Hard	versus	Soft	Real-Time

• Liu’s	definition	is	particularly	strict

“The	timing	constraint	is	hard	real-time	if	it	
must	be	validated that	it	is	always	met”	[1]

• validation	requires
– Proving	the	algorithm	is	correct,	or
– exhaustive	test	/	simulation



Hard	Real-Time	Systems

A	hard	real-time	system	is	one	which	is	made	up	
of	jobs/tasks	with	mostly	hard	real-time	

deadlines	



Why	do	we	need	hard RTS?

• the	real	world	may	dictate	it
– flight	control	system

• safety
– nuclear	power	plant

• high	reliability	/	high	availability
– space	probe,	satellite

• high	cost	of	recovery,	speedy	recovery
– international	monetary	exchange	system	



How	important	is	one	missed	
deadline?

• there	may	be	systems	where	we	cannot	see	
how	just	one	missed	deadline	will	make	a	
difference

• and	while	this	may	be	true,	it	is	often	easier	to	
prove	the	correctness	of	a	“hard”	constraint	
than	it	is	a	probabilistic	one

the	effects	of	a	missed	deadline	may	have	system	ripple	effects	that	are	
non-intuitive	and	extremely	difficult		to	determine



Soft	Real-Time	Systems

A	soft	real-time	system	is	one	in	which	the	jobs	
have	soft	deadlines



Soft	Real-Time	Systems
• timing	constraints	are	generally	more	relaxed	and	
validation	is	less	rigorous
– these	systems	may	not	be	less	complex/expensive	-
why	not?

• timing	constraints	often	specified	probabilistically	
– the	probability	that	a	deadline	will	be	exceeded	by	10	
msec is	1%

• examples:	
– telephone	switching,	multi-media,	stock	price	
quotation	system



Jobs,	Tasks	and	Processes

• a	job is	a	unit	of	work	that	is	scheduled	and	
executed	on	a	real-time	system
– examples:	read	sensor,	compute	FFT,	…

• whereas	a	task is	a	set	of	related	jobs	which	
collectively	provide	a	system	function
– example:	the	FCS	control	loop	set	of	jobs	above	
may	combine	to	provide	the	function	control	
aircraft



Jobs,	Tasks	and	Processes

• a	job	executes	on	a	special	resource	which	we	
will	call	a	processor
–most	commonly	it	is	a	CPU,	but
– note	that	this	very	general	concept	of	a	processor	
might	also	include	a	network	or	a	disk	(where	
execute	now	refers	to	transmit	and	access	
respectively)



Timing	attributes	of	RTS

• purely	cyclic
– all	tasks	execute	on	a	periodic	basis
– even	I/O	tasks	are	made	periodic	through	polling
– includes	most	digital	control	/	monitor	systems



Timing	attributes	of	RTS

• mostly	cyclic
– while	most	tasks	are	periodic	in	such	a	system,	a	
few	tasks	are	asynchronous

– an	asynchronous	task	is	one	which	could	arrive	at	
any	time	(unexpectedly)	
• example	- keyboard	input

– includes	most	high-level	control	systems



Timing	attributes	of	RTS

• asynchronous	&	somewhat	predicable
–most	tasks	are	asynchronous	and	the	duration	
between	tasks	executions	may	vary

– however	these	variations	are	said	to	be	somewhat
predicable
• bounded	or	statistically	well	behaved

– includes	signal	processing,	multimedia



Timing	attributes	of	RTS

• asynchronous	&	unpredictable
–most	tasks	again	are	asynchronous	and	usually	
have	an	associated	high-run	time	complexity

– either	computationally	unpredictable	or	are	highly	
dynamic	in	terms	of	structure

– E.g.:	intelligent	control	system,	self-adaptive	
systems



Specifying	RTS	timing	constraints

Release	time	
the	instant	a	job	is	ready	for	execution
– why	might	it	not	be	ready?
– does	it	execute	right	away?

Response	time
the	time	difference	between	a	job’s	release	
and	its	completion



Specifying	RTS	timing	constraints

Deadline	(absolute)
– Time	by	which	a	job	must	be	completed
– a	job	with	no	deadline	need	not	finish	before	∞

Deadline	(relative)
– the	maximum	allowable	response	time
– for	periodic	jobs,	deadlines	may	be	less	than,	
equal	to,	or	greater	than	the	period

we	will	use	“deadline” to	refer	to	relative	deadline



Specifying	RTS	timing	constraints

t

C

B

A 20

30

50

20

10

30

idle idle

0 40 80 1006020 120 140 160 180 200

- task	released

- task	completed



Embedded	Systems	Definition
“An	embedded	system	is	a	special-purpose	
computer completely	contained	within	the	device	it	
controls	and	not	directly	observable	by	the	user	of	
the	system.	An	embedded	system	performs	specific	
predefined	services rather	than	user-specified	
functions	and	services	as	a	general-purpose	
computer	does .” [7]

“[…]	the	point	of	an	embedded	system	is	to	cost-
effectively	provide	a	more	limited	set	of	services	in	
a	larger	system” [7]



Embedded	Systems	Definition

1. Special-purpose
2. Specific	services
3. Cost	effective



References
[1]	Liu,	J.	W.	S.	Real-Time	Systems.	Prentice	Hall,	2000.

[2]	Laplante,	P.	A.	and	Ovaska,	S.	J.	Real-Time	Systems	Design	and	Analysis,	4th
Edition.	Wiley,	2012.

[3]	Selic,	B.	et	al.	Real-Time	Object	Oriented	Modeling.	Wiley,	1994.

[4]	Daintith,	J.	and	Wright,	E.	A	Dictionary	of	Computing,	6th Edition.	Oxford	
University	Press,	2008.

[5]	Smith,	R.	SOFT426:	Real-Time	Systems	Course.	Queen’s	University,	2004.

[6]	Perkins,	C.	Real-Time	and	Embedded	Systems	Course,	University	of	
Glasgow,	2007.

[7]	Siewert,	S.	Pratt,	J.	Real-Time	Embedded	Components	and	Systems	with	
Linux	and	RTOS.	Mercury	Learning	and	Infromation,	2016.


